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respectively. Meanwhile, as shown in Fig. 8 and Table I, the
range of the fluctuation of the walking speed (relative to the
maximum speed) is decreasing, while the torso-inclination angle,
α, is increasing.

V. CONCLUSION

In this study, we proposed a simple strategy, torso inclination, for
fast walking in PAWs. We have simulated a PAW model and analyzed
how the torso inclination affects its walking behavior. Although there
is a reality gap between the simulation and the real robot’s experi-
mental results, both of them indicate that torso inclination can greatly
increase the walking speed of PAWs by reducing the fluctuation of the
instantaneous speed.
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Abstract—Probing nanometer-sized structures to evaluate the perfor-
mance of integrated circuits (IC) for design verification and manufactur-
ing quality monitoring demands precision nanomanipulation technologies.
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To minimize electron-induced damage and improve measurement accu-
racy, scanning electron microscopy (SEM) imaging parameters must be
cautiously chosen to ensure low electron energy and dosage. This results in
significant image noise and drift. This paper presents automated nanoprob-
ing with a nanomanipulation system inside a standard SEM. We achieved
SEM image denoising and drift compensation in real time. This capa-
bility is necessary for achieving robust visual tracking and servo control
of nanomanipulators for probing nanostructures in automated operation.
This capability also proves highly useful to conventional manual operation
by rendering real-time SEM images that have little noise and drift. The au-
tomated system probed nanostructures on an SEM metrology chip as surro-
gates of electronic features on IC chips. Success rates in visual tracking and
Z-contact detection under various imaging conditions were quantitatively
discussed. The experimental results demonstrate the system’s capability
for automated probing of nanostructures under IC-chip-probing relevant
electron microscope imaging conditions.

Index Terms—Automated nanoprobing, drift compensation, image
denoising, nanomanipulation system, scanning electron microscope (SEM).

I. INTRODUCTION

Nanomanipulation inside scanning electron microscopes (SEMs)
enables visual observation and physical interactions with objects at
the submicrometer and nanometer scales. Applications range from
nanomaterial characterization [1]–[4], to micro-nano device assem-
bly [5], [6], to photonics [7], [8], and to biology research [9]. In addition,
it has become the standard for the semiconductor industry to evaluate
the performance of integrated circuitries (IC) via nanoprobing under
electron microscopy imaging [10]. Nanoprobing inside the SEM allows
needle probes to be precisely positioned on top of submicrometer-sized
electrodes for direct electrical characterization, which is important for
failure analysis, quality control, and process development for the semi-
conductor industry [11], [12].

During the nanoprobing process, SEM imaging conditions must be
carefully controlled to ensure accurate probing and minimal electron
beam-induced damage to the IC chip [13]. The electron dosage to
the sample should be kept low by using low accelerating voltage and
emission current and short irradiation time. Under these conditions,
imaging resolution and signal-to-noise ratio are poor, and image drift
is serious. SEM image drift refers to the movement of the entire image,
caused by electron beam drift, charge drift on the specimen, and elec-
tromagnetic interference from the environment. In nanoprobing, image
drift becomes particularly significant at high magnifications under low
accelerating voltages, which must be compensated for. The constraint
of short irradiation time also imposes pressure and high requirements
in operation dexterity on the human operator, which can reduce the
reliability and consistency of nanoprobing.

Automation at the nanometer scale rapidly progressed in the past
few years. Automated nanomanipulation inside the SEM has been re-
ported for nanoscaled material handling and characterization. Utilizing
nanoprobes and microgripping tools, nanowires were visually identi-
fied, picked up, transferred, and characterized [14]–[16]. Nanomaterial-
based field-effect-transistor biosensors were constructed via SEM-
based nanomanipulation, which involves controlling nanoprobes to
remove unwanted nanowires bridging the source and drain electrodes
[17]. Automated manipulation of bio materials (single cells) under
SEM imaging was also demonstrated [18]. These automation systems
utilize visual servoing for precise positioning of an end-tool; thus, the
automation performance depends heavily on the SEM imaging qual-
ity. In electron microscopy imaging, imaging quality is proportional to
electron beam energy and dosage to the sample. For nanoprobing of
electronic structures, where electron energy and dosage must be kept
to minimum, automation must cope with the severely degraded images
containing high noise and large image drift.
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(a) (b)

Fig. 1. (a) Nanomanipulation system. (b) Nanostructures on an SEM metrol-
ogy chip used in nanoprobing experiments.

The majority of existing noise reduction methods are local smooth-
ing filters such as the Gaussian smoothing model [19], neighborhood
filtering [20], and anisotropic filtering [21]. Other algorithms such as
total variation minimization [22], [23] use the calculus of variations
for denoising images. In comparison, the nonlocal means (NL-means)
method [24] is based on globally averaging all the pixels in an image
and produces images with lower noise and with more details retained.
The algorithm when implemented on central processing units (CPUs),
however, is highly time-consuming and not suitable for real-time SEM
image denoising/processing.

As to image-drift compensation, Cizmar et al. reported a correc-
tion technique that works with a large number of quickly taken frames,
which are properly aligned and then composed into a single image [25].
This correction technique does not satisfy the real-time requirement for
nanoprobing. Sutton et al. used two- dimensional (2-D) digital image
correlation [26] for high accuracy measurements but not for real-time
applications. Techniques were also developed for drift compensation in
atomic force microscopy (AFM) imaging [27], [28]. Due to the funda-
mental differences in imaging principles, the AFM drift compensation
techniques are not applicable to SEM imaging.

State-of-the-art nanoprobing is conducted manually by highly
trained personnel, who carefully control nanomanipulator positions via
joysticks and closely observe the SEM screen that displays images of
poor quality and significant drift. This paper, for the first time, presents
a nanomanipulation system (see Fig. 1) and automation techniques
that together enable reliable automated nanoprobing of nanostructures
inside the SEM. Compared with our previous nanomanipulation sys-
tem, the new system integrates tubular nanopositioners that provide
a motion range of tens of micrometers with subnanometer resolu-
tion and nonobservable vibration. Graphics processing unit (GPU)-
accelerated real-time NL-means video denoising is achieved, which
significantly increases the success rate of automated nanoprobing.
Experimental evaluation of the proposed approaches are discussed.
The realization of automated probing of nanostructures on SEM metrol-
ogy chips is demonstrated. Compared with our conference paper [29],
this paper provides additional details on technique implementation and
nanoprobing results; furthermore, improved success rates of automated
nanoprobing are presented.

II. SYSTEM DESIGN

A. Nanomanipulation System

Nanomanipulation systems typically use the same piezo stack to
produce coarse motion (stick-slip mode) and fine motion (scanning
mode). This configuration provides potentially unlimited coarse motion

Fig. 2. Flow of the nanoprobing process.

ranges with excellent static positioning capability. However, the high-
frequency stick-slip piezo movements generate mechanical vibrations
and can result in poor dynamic behavior. The vibration can be further
amplified at the low-stiffness nanoprobes attached to the nanomanip-
ulator, causing the delicate probe tip to “whip” around while moving.
This can damage the probe tip and/or the sample. In the fine-motion
mode, vibration is not existent; however, the motion range is typically
rather limited (e.g., <5 μm).

To satisfy the stringent static and dynamic positioning requirements
for nanoprobing, design modifications were made to our previously re-
ported nanomanipulation system [30]. Similar to the previous system,
the new system [see Fig. 1(a)] consists of two independent 3-degree-
of-freedom (DOF) manipulators mounted on an SEM load-lock com-
patible carrier. A tubular nanopositioner, illustrated in Fig. 3, similar
to an atomic force microscopy piezo scanner is added to each manip-
ulator. It was constructed by connecting a piezo tube in series with
a piezostack, covered by a metallic housing for shielding. The piezo
tube provides radial bending motion and the piezo stack provides axial
extension. These nanopositioners, shown in Fig. 1, have subnanome-
ter motion resolution and a motion range that is at least an order of
magnitude larger than the magnitude of vibration from coarse posi-
tioning. The overall nanomanipulation system has a motion range of
10 mm provided by the piezo stack; a fine motion range of tens of
micrometers with subnanometer resolution and nonobservable vibra-
tion. System characterization was conducted through subpixel tracking
based on SEM imaging, as previously described in [30].

B. Overall Process of Nanoprobing

The nanoprobing process is divided into two steps. The teaching
step involves the user who defines the automation task, followed by
full automation of nanoprobing on specified locations on a sample.

In the teaching step (see Fig. 2), the human operator first uses joy-
sticks or our program interface to bring the two probe tips and the
sample into the field of view and field of depth. The drift compensation
algorithm is initiated by selecting a fixed feature that is stationary on the
sample. Target structures on the sample for probing are then selected
via computer mouse clicking and stored. The automated Z-contact
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Fig. 3. Nanopositioner design, consisting of piezotube for radial bending, and
piezostack for axial extension.

Fig. 4. NL-means filter and implementation on GPU.

detection algorithm is initiated and brings both probe tips to contact
the sample. The contact detection algorithm is based on detecting the
sliding motion of the probe tip on the sample upon contact [31]. The
teaching process ends with the user defining the sequence of probing
targets for each of the two probes.

In the automation step (see Fig. 2), the system controls automatically
the two nanoprobes to move in XY to each of the predefined probing
targets in sequence and execute Z-contact detection to establish probe-
sample contact. When the nanoprobes move to the next targets for
probing, they are lifted (∼200 nm) by the system, moved in XY to
the next target, and then contact the targets via automated Z-contact
detection.

When all targets are probed within the field of view, the nanoprobes
are retracted to their original positions in 3-D. The system controls the
SEM stages to move the sample and bring new probing targets into the
field of view. The complete nanoprobing flow is repeated.

C. NL-Means Denoising Implemented on GPU

In the NL-means algorithm [24], given a noisy image v = {v(i)|i ∈
I}, the denoised value NL[v](i), for a pixel i, is computed as a
weighted average of all the pixels in the search window (red window
in Fig. 4) of size (2s + 1)× (2s + 1), according to

NL[v](i) =
∑

j∈I

w(i, j)v(j) (1)

where the family of weights {w(i, j)}j depends on the similarity be-
tween pixels i and j (green window in Fig. 4).

The above equation describes single image NL-means denoising.
Since nanoprobing requires the handling of image sequences (versus

singe image), due to the temporal correspondence of image sequence,
more similar patches can be found than just searching within the cur-
rent single frame. By extending the single image approach to image
sequence NL-means, better denoising results can be achieved. In prac-
tice, robust optical flow-based motion estimation is often used to estab-
lish reliable temporal correspondence [32]. With the estimated motion
flow, the denoised result NL[v](i, t) of frame v(i, t) is

NL[v](i, t) =
t∑

k= t−F

τ t−k
∑

j∈I

w(i, j, k, t)v(j, k) (2)

where τ is a coefficient controlling temporal decay and is set to 0.9 in
experiments. F is number of backward frames and set to 3. The fam-
ily of weights {w(i, j, k, t)}j,k , satisfying 0 ≤ w(i, j, k, t) ≤ 1 and∑

k

∑
j w(i, j, k, t) = 1, is defined as

w(i, j, k, t) =
1

Z(i)
e
−
‖v (NL K ( i , k , t ) , k )−v (Nj , k ) ‖22 , α

h 2 (3)

where pixel LK(i, k, t) at frame k corresponds to pixel i at frame t,
which is determined with the Lucas-Kanade method [32]. Z(i) is the
normalizing constant

Z(i) =
∑

k

∑

j

e
−
‖v (NL K ( i , k , t ) , k )−v (Nj , k ) ‖22 , α

h 2 . (4)

Nl denotes a square neighborhood window (green window in Fig. 4)
of fixed size (2d + 1)× (2d + 1) and centered at a pixel l. ‖ ‖2

2 ,α

is the Euclidean distance weighted by a Gaussian kernel g of standard
deviation α. In our implementation, it is replaced with the classical
Euclidean distance ‖ ‖2

2 since the classical Euclidean distance is a
reliable measure for the comparison of images in a window [33]. The
value of h controls the decay of the exponential function.

Although the NL-means filter can produce better denoising results
compared with other algorithms (comparison results discussed later),
it consumes significant computing power because of the large amount
of data it fetches. For each pixel i at frame t, F (2s + 1)2 num-
ber of weights {w(i, j, k, t)}j,k need to be calculated. To calculate
each weight {w(i, j, k, t)}j,k , additional (2d + 1)2 number of weights
Nl need to be determined. Hence, the overall computational com-
plexity of the NL-means algorithm to produce one filtered frame is
O(FW Hs2d2 ), where W and H are image width and height, respec-
tively. For standard CPU implementation of the NL-means filter, it
costs at least several seconds to process a 640× 480 image.

With the rapid evolution of the GPU technology, GPU process-
ing is well suited to address problems that can be expressed as data-
parallel computations since the same function is executed on many
data elements in parallel. The NL-means filter belongs to this class of
problem. Thus, we, for the first time, implemented the algorithm on
GPU to achieve real-time denoising/filtering of SEM images via the
graphics programming language Compute Unified Device Architecture
(CUDA) [34].

In CUDA, the GPU serves as a processing device for the CPU. The
CPU calls kernel functions that run on the GPU to perform tasks in a
high number of parallel threads. All threads are organized into multiple
independent blocks. As illustrated in Fig. 4, the threads are divided
into 2-D blocks, with each block containing BDx ×BDy number
of threads. The entire frame has W ×H number of pixels, and each
pixel is filtered by one thread. Hence, the total number of blocks is
� W

B D x
� × � H

B D y
�.

In our implementation of the NL-means algorithm, parallel reduction
was conducted to fully exploit parallelism. The memory bandwidth was
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Fig. 5. Flow of drift compensation.

maximized by prefetching data to shared memory. The shared memory
is a dedicated on-chip user-controllable memory for fast read/write,
which is shared by every thread in a block. By loading all the operands
required by the threads in a block into shared memory from the GPU
global RAM, the subsequent large amount of instructions will only
fetch data from the shared memory. Hence, the data transfer cost was
dramatically reduced considering the huge bandwidth difference be-
tween the on-chip shared memory and the off-chip global RAM.

Since each block has only BDx ×BDy threads, and each thread
filters one pixel, only a small number of pixels from the image sequence
are fetched to shared memory. In the NL-means filter, in order to
determine the denoised value for a pixel i, all the pixels j in the search
window centered at pixel i and all the pixels in the neighborhood
window centered at each pixel j must be fetched. This means that for
the threads lying on the border of a block, such as pixel i in Fig. 4,
extra pixels around the block are required to compute denoised value
NL[v](i). For an image sequence, similar patches are searched for
in the previous F frames. The patch size is affected by the maximal
difference |Δz| in optical flow between adjacent frames for pixels
within a block, such as pixel i and m in Fig. 4. Since image sequences
are collected under the fast scanning mode (20 Hz), |Δz| is no more
than 6 based on experimental trials. Therefore, overall F (BDx + 2s +
2d + |Δz|)2 pixels (purple square in Fig. 4) are required by a 2-D block
consisting of BDx ×BDy threads and fetched into shared memory to
reduce the data transfer cost of the subsequent operations.

D. Drift Compensation

To compensate for SEM image drift, visual tracking is conducted. In
the initialization step of nanoprobing, a distinct stationary feature on the
sample is manually selected. In the automation steps, in each captured
SEM image, the selected feature is tracked to verify whether drift
occurs, and the system performs drift compensation. The procedure is
illustrated in Fig. 5. Feature tracking determines the effectiveness of
drift compensation.

Correlation-based template matching [35] is an algorithm for object
tracking and position estimation in noisy images. The orientation and
scale estimation involves a long computation time and can endanger the
real-time tracking performance of the algorithm. This was not a concern
in our system because the orientation of the nanoprobe is fixed.

The tracking task for image drift compensation is to determine the
position of a given pattern in an image f . Let f (x, y) denote the
intensity value of the image with a size of Mx ×My at the point
(x, y), x ∈ 0, . . . , Mx − 1, y ∈ 0, . . . , My − 1. The pattern is repre-
sented by a given template t with a size of Nx ×Ny . A common way

TABLE I
NANOMANIPULATION SYSTEM SPECIFICATIONS

to calculate the position (upos , vpos ) of the pattern is to evaluate the
normalized cross correlation coefficient, γ at each point (u, v) for f
and the template t, which has shifted by u steps in the x direction and by
v steps in the y direction. The normalized cross-correlation coefficient
is

γ =

∑
x,y (f (x, y)− fu ,v )(t(x− u, y − v)− t)

√∑
x,y (f (x, y)− fu ,v )2

∑
x,y (t(x− u, y − v)− t)2

(5)

where fu ,v denotes the mean value of f (x, y) within the area of the
template t shifted to (u, v)

fu ,v =
1

NxNy

u+N x −1∑

x=u

v +N y −1∑

y = v

f (x, y). (6)

Similarly, the notation t is the mean value of the template t.

III. EXPERIMENTAL RESULTS

A. Nanomanipulation System Characterization

Table I summarizes the main specifications of the nanomanipulation
system. Detailed characterization of the coarse positioning system was
reported in [30]. Nanopositioner characterization was conducted using
SEM imaging at high magnifications. With the driving electronics used
in the system, the achievable motion resolution should be subnanome-
ter. However, the actual measurement result as summarized in Table I
was limited by the imaging resolution of the SEM.

B. Characterization of SEM Image Noise and Drift

Experiments were conducted to quantify SEM image drift and noise
under various imaging conditions. Image drift is defined as random
movements of the entire SEM image, caused by shifting of the electron
beam due to external disturbances (e.g., magnetic field change). Noise
is defined as random variations in each pixel. The combined effect of
drift and noise can be quantified by tracking a stationary object/feature
over time. To decouple the drift and noise effect, two stationary objects
in close proximity were tracked simultaneously, and the difference
between the two was determined to be the noise level. The tracking
accuracy was quantified by tracking a feature on a still image and
determined to be 0.03± 0.16 pixel.

Fig. 6 summarize the effect of varying magnifications and varying
accelerating voltages on SEM image noise and drift. A total of 500
frames of SEM images were collected under the fast scanning mode
(20 Hz) for quantifying noise and drift under magnifications from
1000× to 80 000×. Another 500 frames of fast-scanned images were
collected to measure noise and drift under accelerating voltages from
1 to 20 kV. For each of the 500 frames collected, objects were visu-
ally tracked, and the magnitude of their displacements compared with
the previous frame was determined. The data quantitatively show that



762 IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 3, JUNE 2014

Fig. 6. (a) SEM noise and drift under different magnifications. Accelerating voltage: 1 kV; emission current: 10 μA for all testing. The results are obtained from
tracking 500 frames for each magnification. (b) SEM noise and drift under different accelerating voltages. Emission current: 10 μA; magnification: 35 000× for
all testing. The results are obtained from tracking 500 frames for each accelerating voltage. The error bars represent ±1 standard deviation.

TABLE II
GPU AND CPU PROCESSING TIME OF NL-MEANS FILTERING

lower accelerating voltage and higher magnification, as required in IC
structure probing, induce increased image noise and drift [see video].

C. Real-Time SEM Image Denoising

Nanoprobing requires the use of lower accelerating voltages and
a reasonably high magnification; hence, images have high noise and
drift. The GPU accelerated NL-means filter was implemented on a
standard computer (Intel Core i7 3.6GHz CPU, 3GB DDR3 RAM,
NVidia GTX560 GPU with 1GB global memory and 48kB on-chip
shared memory per block). For NVidia GTX 560 GPU, each block
can contain at most 1024 threads; therefore, we set the block size to
32× 32. In this way, by storing pixels as one byte data, (32 + 2 ∗ 10 +
2 ∗ 3 + 6)2 × 3 = 12 288 bytes are fetched into shared memory, which
avoids the overfill of the 48-kB shared memory.

In the NL-means denoising algorithm, d is the similarity window
radius. It was found in our experiments that a 7× 7 similarity window
was large enough to be robust to noise and small enough to maintain
details. Table II shows the NL-means filter processing time of a 640×
480 SEM image using different search window sizes, computed using
both GPU and CPU. It takes more than 2 s for the latest CPU (e.g., Intel
Core i7 3.6 GHz) to process one noisy image, while 0.04 s or shorter per
frame is required for real-time applications. The results show that GPU
processing time is 300–500 times faster than the CPU in our system.
The 21× 21 search window was chosen since it provides a frame rate
of 25 frames per second and in the meanwhile provides satisfactory
denoising result. The parameter h controls the degree of filtering. A
larger h value removes noises but also image details, and a smaller
h value preserves details but also noises. For our application, h was
experimentally set to 10σ. The standard deviation of the added noise
σ, was calculated for each SEM image frame.

Fig. 7(a) shows an image captured in the fast scanning mode (20 Hz)
and Fig. 7(b) in slow scanning mode (0.5 Hz). The rest of the images in
Fig. 7 are denoising results using the image sequence NL-means algo-
rithm [see Fig. 7(c)], single image NL-means algorithm [see Fig. 7(d)],
and two other popular filtering algorithms: K-nearest neighborhood
[see Fig. 7(e)] and total variation [see Fig. 7(f)]. To quantitatively com-

Fig. 7. Comparison of filtering results using different denoising algorithms.
(a) Raw image captured in fast scanning mode (20 Hz). (b) Image captured in
slow scanning mode (0.5 Hz). (c)–(f) Images filtered with image sequence NL-
means algorithm (PSNR = 21.91); single image NL-means algorithm (PSNR =
21.78); K-nearest neighborhood algorithm (PSNR = 21.05); and total variation
algorithm (PSNR = 20.74).

pare the results from these filtering algorithms, the slow scanned image
[see Fig. 7(b)] was used as a reference to compute the peak signal-to-
noise ratio (PSNR) values. The comparison results demonstrated that
image sequence NL-means filtering achieves the highest PSNR score.
While it is more effective in reducing SEM image noise, it also retains
detailed information (e.g., edge) to the highest degree.

D. Visual Tracking of Nanoprobe Tips

Nanoprobe tips were mounted on the nanomanipulation system. For
evaluating visual tracking performance, SEM imaging conditions were
set to 1-kV accelerating voltage, 10 μA emission current, and 10 mm
working distance to simulate IC probing-relevant situations. The SEM
used in the experiments was a Hitachi-S4800.

Visual tracking was conducted for visual servo control of the
nanoprobes in the XY directions and also for vision-based contact de-
tection in the Z-direction. Tracking success rates were quantified for
the following scenarios: 1) without drift compensation or noise reduc-
tion; 2) with only noise reduction; 3) with only drift compensation; and
4) with both drift compensation and noise reduction.

Visual tracking of probe tips in the XY directions was repeated
20 times under magnifications of (1000×)−(80 000×) for each of
the four previously mentioned scenarios. The manipulator movement
speed was scaled according to changes in magnification in order to
ensure that the probes move at a constant speed (100 pixels/s) under
all magnifications. XY visual tracking was considered successful when
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Fig. 8. Success rates under various imaging magnifications. (a) XY visual tracking of nanoprobes. (b) Z-contact detection. (c) Automated nanoprobing.

the probe stays within±3 pixels of the predefined path and reaches the
final destination. As summarized in Fig. 8(a), at low magnifications,
similar tracking success rates were obtained in all four scenarios be-
cause image noise and drift are both less severe. However, at higher
magnifications (e.g., 80 000×), combined drift compensation and noise
reduction resulted in a 40% higher success rate than directly perform-
ing nanoprobe tracking in the raw images [success rates: 83% versus
40%, arrow labelled in Fig. 8(a)].

For nanoprobing, probe tips must physically contact target struc-
tures on a sample. In vision-based contact detection, reliable tracking
of nanoprobe tips is critical for detecting the sliding motion that starts
to be present in the image plane when the probe tips contact the sam-
ple. For each test in our experiments, the probes were lowered from
approximately 20 μm above the sample. Contact detection was con-
sidered successful when the probe contacted the sample surface and
slid for less than 3 pixels from when the tip first made contact with the
sample. All other cases were considered a failure. Under each magni-
fication, testing was repeated 20 times.

Fig. 8(b) summarizes the results of automated Z-contact detection
under the four scenarios. Image filtering and drift compensation are
necessary for achieving high success rates in Z-contact detection. It
needs to be noted that there is a sharp drop in Z-contact detection
success rate comparing magnifications of 50 000× and 80 000× for all
four scenarios. This occurred because the depth of field under 80 000×
is smaller than the separation between the nanoprobe tip and the sample.
Therefore, only the tip or the sample (but not both) can be within focus
initially. As the probe tip descended toward the sample and hence into
focus, failure rates in probe tip template matching became higher.

The complete nanoprobing operation consists of XY visual tracking,
followed by Z-contact detection. Fig. 8(c) summarizes the success rate
of automated nanoprobing conducted under different image magnifi-
cations. As expected, the nanoprobing success rate is approximately
equal to the success rate of XY visual tracking multiplied by the success
rate of the Z-contact detection procedure. Compared with single image
NL-means filtering, image sequence NL-means filtering improved the
success rate of automated nanoprobing by an additional 3% on aver-
age. Fig. 9 summarizes the success rates of automated nanoprobing
using different denoising algorithms. The results further demonstrate
the advantage of image sequence NL-means filtering.

E. Nanoprobing

An SEM metrology chip from MetroBoost was used for nanoprobing
tests. The sample contains hundreds of submicrometer-sized patterns
that are metallic features suitable for probing tests. Compared with
IC chips, these samples do not require lengthy sample preparation
(e.g., decapsulation). The selected sample pattern on the chip consists

Fig. 9. Success rate of automated nanoprobing using different denoising
algorithms.

Fig. 10. Automated nanoprobing under 40 000× magnification. The two
nanoprobes were visually servoed in the XY directions to reach user-defined
locations (1-1 and 2-2). The system automatically landed the probes on the
targets using vision-based Z-contact detection.

TABLE III
COMPARISON OF MANUAL AND AUTOMATED NANOPROBING

of concentric circles with line width of 130 nm separated by 125
nm spacing. The sample was mounted on the SEM stage and can be
rotated independently from the nanomanipulation system. Tungsten
nanoprobes were cleaned with potassium hydroxide and hydrofluoric
acid for removing surface oxide, resulting in a tip radius < 100 nm.
The probes were mounted on each of the two nanomanipulators and
were electrically grounded.

Fig. 10 shows a sequence of screenshots taken during the automated
nanoprobing process. The nanoprobing task was conducted at a magni-
fication of 40 000×. Three skilled human operators each executed the
same probing task 20 times, and the operation speed was compared with
automated operation, as summarized in Table III. Excluding the man-
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ual teaching steps, automated nanoprobing took approximately 15 s
to probe four points (labeled 1-1 and 2-2 in Fig. 10). This automated
probing speed is at least three times higher than the manual probing
speed of a highly skilled operator. The SEM image drift compensation
and noise reduction techniques implemented in our system enabled
reliable automated nanoprobing; and also proved highly useful to man-
ual probing by rendering higher quality SEM images in real time [see
video].

Failed nanoprobing occurred when a sudden image shift happened
due to the environmental change in a magnetic field (e.g., on-off of
motors and passing by of train/streetcars). The installation of a field
cancellation system is necessary for mitigating this issue. A sudden
image shift or change in brightness could also happen when the sample
and probe are not at the same electric potential, causing a large electric
discharge when the two make contact. Furthermore, the probe can
also change in brightness depending upon its location relative to the
secondary electron detector, which can create shadowing effects. Our
ongoing study aims to tackle these challenges to enhance the automated
nanoprobing system.

IV. CONCLUSION

Nanoprobing electronic features necessitates the use of low accel-
erating voltage, low emission current, and short irradiation time in
imaging in order to minimize electron beam-induced damage to IC cir-
cuits. In the meanwhile, high imaging magnifications are required for
accurately probing nanometer-sized target structures. These conditions
result in high noise and large drift in real-time electron microscopy
imaging, posing challenges to both manual operation by skilled oper-
ators and the implementation of automated nanoprobing. This paper
presented a system for automated nanoprobing inside a standard SEM.
The system is capable of 10 mm travel in three axes with motion
resolutions better than 1 nm. Techniques for denoising SEM images
and for compensating for SEM image drift were developed. Visual
servoing and position control embedded in the system enabled precise
positioning of nanoprobes. Experimental results demonstrated that the
system is capable of performing automated probing on nanostructures
with a high success rate, at a speed at least three times higher than
skilled operators.
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Natural Gaits for Multilink Mechanical Systems

Md Nurul Islam and Zhiyong Chen

Abstract—Typical animal locomotion is achieved by the rhythmical un-
dulation of its body segments while interacting with its environment. It
inspires the mechanical design of multilink locomotors. With different pos-
tures, a multilink system may present different locomotion gaits. Recently,
a so-called natural oscillation gait was studied for multilink systems, and a
class of biologically inspired controllers was designed for the achievement
of the gait. In this paper, the theoretical design is experimentally applied on
a mechanical multilink testbed of two posture configurations in rayfish-like
flapping-wing motion and snake-like serpentine motion. The effectiveness
of the design is cross examined by theoretical analysis, numerical simula-
tion, and experiments.

Index Terms—Biologically inspired control, central pattern generator
(CPG), locomotion, robotics.

I. INTRODUCTION

Research on biologically inspired robotics, especially multilink
snake robots, is of constant interest for biologists and engineers. An-
alytical studies of snake locomotion as a multisegmental system can
be traced back to Gray’s work [1], which emphasized the importance
of environmental forces acting in the normal direction during body
undulation. A recent review on snake robots was given in [2], which
considers research efforts that are related to modeling of snake robots,
physical development, and control design for snake locomotion. From
the literature over the past decades, research on snake robots was con-
ducted along a variety of research lines. One of the main research lines
focuses on structural development for new functionalities. For exam-
ple, the robots in “active cord mechanism” developed in Hirose’s group
have “the function of an arm” when they hold something by rolling it-
self and have “the function of legs” when they move by creeping (see,
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e.g., [3] and [4]). The modular snake robots designed in Choset’s group
are able to use their many degrees of freedom (DOFs) to achieve a va-
riety of locomotion capabilities like searching across a gap, traversing
through brush, swimming, and climbing inside and outside a pipe (see,
e.g., [5] and [6]). The curvature-derivative-based robots designed by
Date and Takita [7] are able to adaptively travel over rugged terrain
using obstacles as supports. A similar idea was used in the Kano et al.
design [8]. Their snakes actively utilize terrain irregularities and move
by effectively pushing their body against the scaffolds that they en-
counter. The adaptability to environment was analyzed in [9] for a
class of snake-like robot using passive creeping.

Another research line aims to understand and design rhythmic pat-
terns of body oscillation to generate robot locomotion. For example,
in [10] and [11], snake-like locomotors were regulated to achieve sinu-
soidal set points characterized by amplitudes, frequencies, and phase
lags. The central pattern generator (CPG) is an important concept
widely used in this direction. A CPG is a group of neurons intercon-
nected in a specific manner, which can endogenously produce rhythmic
outputs to activate muscle contractions, resulting in coordinated rhyth-
mic body motions. A CPG-based controller was used in [12] to generate
traveling waves in terms of asymptotically stable limit cycle trajecto-
ries. It was also used in [13], where the relation between the CPG
parameters and the serpentine locomotion was defined. Many other
CPG-based controllers can be found in the literature, e.g., for snake
robots [14], [15] and for turtle-like underwater vehicles [16]. In the
aforementioned sine-based or CPG-based architecture, the rhythmic
patterns of body oscillation are designed for specific applications. It is
interesting to develop general approaches to select rhythmic patterns
for a locomotor, typically based on its kinematic or dynamic model.
Such models have been widely studied in the literature, e.g., [17] for
serpentine locomotion, [18] for 3-D snake robots, and [19] for general
flexible link manipulators. Based on the models, a variety of rhythmic
patterns have been studied. The feature of these rhythmic patterns is
that they are entrained with the physical system; hence, if the system
parameters change, the patterns can change accordingly (in comparison
with approaches where the patterns are generated in open-loop manner
and with neural coupling rather than mechanical coupling). The most
recent results include the optimal gait proposed in [20] and the natural
oscillation gait in [21] and [22].

This paper follows the theoretical framework for the natural
oscillation proposed in [21] and [22]. In particular, natural oscillation
is an inherent characteristic of a mechanical rectifier interacting
with environment, which is defined as the free response in persistent
oscillation of the system with its damping properly compensated. The
concept is consistent with the well-established one for standard lightly
damped mechanical systems (like a pendulum), which is defined to be
a free response of the modified system that is obtained by removing
all the damping effects to achieve marginal stability for sustained
oscillation. The main objective of this paper is to experimentally
verify that the so-called natural oscillation does exist in real multilink
mechanical systems, and it can be effectively achieved in a locomotion
behavior. Actually, a simpler testbed, called the prototype mechanical
rectifier (PMR), has been established in our recent work [23] to
experimentally verify the theoretical framework. The PMR system
consists of two main parts: a double pendulum and a disk. The
intended operation of the PMR is basically to swing the pendulum
in a coordinated manner to make the disk rotate. The PMR model
is simple enough to allow us to extract engineering principles by
theoretical analysis, simulation, and experiments; however, because
of the simple structure of the PMR model, complicated locomotion
behaviors cannot be demonstrated. In this paper, we focus on a more
sophisticated structure, which is used as the experimental platform to
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