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Abstract—Ampoule injection is a routinely used treatment
in hospitals due to its rapid effect after intravenous injection.
During manufacturing, tiny foreign particles can be present
in the ampoule injection. Therefore, strict inspection must be
performed before ampoule injections can be sold for hospital
use. In the quality control inspection process, most ampoule
enterprises still rely on manual inspection which suffers from
inherent inconsistency and unreliability. This paper reports an
automated system for inspecting foreign particles within ampoule
injections. A custom-designed hardware platform is applied for
ampoule transportation, particle agitation, and image capturing
and analysis. Constructed trajectories of moving objects within
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liquid are proposed for use to differentiate foreign particles from
air bubbles and random noise. To accurately classify foreign
particles, multiple features including particle area, mean gray
value, geometric invariant moments, and wavelet packet energy
spectrum are used in supervised learning to generate feature vec-
tors. The results show that the proposed algorithm is effective in
classifying foreign particles and reducing false positive rates. The
automated inspection system inspects over 150 ampoule injections
per minute (versus by
technologist) with higher accuracy and repeatability. In addition,
the automated system is capable of diagnosing impurity types
while existing inspection systems are not able to classify detected
particles.

Note to Practitioners—Present quality assessment of ampoule
injections in pharmaceutical manufacturing relies on manual
operation by certified technologists or machine-assisted detection
systems. Existing technologies are not able to effectively distin-
guish symbols/dirt on the surface of an ampoule, air bubbles,
and random noise from foreign particles inside the ampoule. This
paper reports an automated ampoule inspection system consisting
of two working stations (high-speed revolving station and abruptly
stopping station). The system agitates particles and rotates them
spirally along the axis of the ampoule container. Based on image
processing and trajectories construction, foreign particles are ef-
fectively detected and distinguished from air bubbles and random
noise.
Index Terms—Ampoule injection inspection, automated am-

poule inspection, foreign particles, impurity detection, supervised
learning.

I. INTRODUCTION

A N AMPOULE, which is commonly made of glass, is
a small sealed vial used to contain and preserve liquid

injectable pharmaceuticals. Ampoule injection [see Fig. 1(a)]
plays an important role in clinical treatment due to its instant
effect after intravenous injection. Because of imperfect control
in ampoule manufacturing, certain particles such as glass chips,
rubber chips, chemical fibers, and hair may appear in the liquid
medicine due to the degradation of the filtering system in
manufacturing, decreased purification level of the factory, and
carbonization during container sealing [1]. These tiny foreign
particles ( ) cannot be metabolized by the
human body and can cause thrombus, phlebitis, tumor, anaphy-
lactic reaction or even death when they are injected into the
human vein [2], [3]. Presence of these particles has been one of
the top ten reasons for the recalls of liquid pharmaceuticals [4].
Although the probability of particle presence is low

( ), manufactured injections require 100% strict inspec-
tion prior to entering the market, according to the regulations
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Fig. 1. Sample images of typical foreign particles and disturbances. (a) Am-
poule injection. (b) Fiber. It usually comes from clothes or filtering system.
(c), (d) Glass chips. They usually come from incomplete container cleaning or
sealing. (e) Hair. (f), (g) Label and dirt on surface of the ampoule. (h) Air bub-
bles in the liquid. (i) Manual inspection.

of U.S. Food and Drug Administration (FDA) [5]. Fig. 1 shows
typical insoluble foreign particles and disturbances (e.g.,
labeling or dirt on the ampoule surface, air bubbles inside
ampoule). Presently, more than 95% pharmaceutical manufac-
turers in developing countries still adopt manual inspection
for quality control [6]. In manual inspection [see Fig. 1(i)], an
inspector rotates and flips over the injection container gently
under fluorescent lighting in a darkroom. Rotating and flipping
makes foreign particles suspended or move in liquid medicine.
The inspector based on experience determines whether the
product is acceptable. “Light blocking” is also used in labora-
tories for detecting and sizing particles larger than 1 , based
on the amount of light a particle blocks when passing through
the detection area [7]. Light attenuation, flicker or bubbles
existing in the injection can lead to high false positive or false
negative inspection rates. Subjective judgement, low efficiency,
and human fatigue call for automated inspection.
Most pharmaceutical manufacturers in developed countries

rely on machine-assisted inspection [8]. Semi-automated ma-
chines (e.g., Dabrico DI-100 LT/XL) automate the agitation of
ampoules one at a time bymimicking human operators. The ma-
chine is also equipped with convex lens that magnify particles
for human operator to observe. Air bubbles generated during
ampoule agitation can distract the inspector and cause high false
positive rates. In addition, the serial inspection process is slow
and easily causes human fatigue. The “light blocking” method
[9] is adopted by Japan Eisai in their automated inspection ma-
chine AIM288. A halogen bulb is used as the light source, and
a sensor is used to identify slight variations of light absorbance
when particles pass the detection area. For CCD/CMOS camera-
based automated inspection machines (e.g., Seidenader XS), se-
quential images of an ampoule injection are captured, and frame
differencing is applied to detect foreign targets. Unfortunately,
false positive rates become high for both the light blocking and
CCD/CMOS-based automated inspection machines when air
bubbles or random noise are present during ampoule agitation.
Furthermore, existing automated inspection machines are not
able to classify the detected foreign particles although classifi-
cation is desired by the pharmaceutical manufacturing industry.
To automate the inspection process and achieve proper clas-

sification of foreign particles, a number of challenges must be
tackled. Several types of foreign particles can be present in the

ampoule injection. No prior knowledge such as the exact size
or position of the foreign particles can be used for particle fea-
ture extraction or trajectory tracking. Hence, traditional particle
size or shape-based object detection algorithms cannot be ap-
plied. After detection, they need to be properly differentiated
from air bubbles and scratches or marks on the ampoule sur-
face. Particles in an ampoule need to be stirred up for recog-
nition through their moving trajectories. In human operation or
existing machine-assisted inspection machines, an ampoule is
flipped over to agitate foreign particles. However, this agita-
tion approach often undesirably generates air bubbles. “Linear
chain/belt conveyor” and “rotary platform” are the two main de-
signs for container transportation in production lines [10]. On a
linear conveyor, containers are moved in a straight line. How-
ever, this approach typically requires larger space than rotary
platforms where containers are transported among several star
wheels and cameras are installed around them. Therefore, a ro-
tary platform was developed in our work.
Algorithms such as 3D matched filtering [11], [12], multi-

stage hypothesis testing [13], dynamic programming [14], [15],
and Markov random field-based contour tracking [16] have
been reported for detecting weak, moving targets immersed
in a noisy background. These algorithms detect low-contrast
objects by accumulating their trajectory energies based on the
moving disciplines of the particles between frames. Typically,
multiple threshold values need to be determined for these
algorithms to properly track moving objects. These algorithms
are also computationally costly and require significant storage
space for storing intermediate results. Other algorithms that
can be used to detect foreign particles in liquid are the support
vector machine (SVM) [17], [18], sub-pixel registration and
frame differencing [19], and probability weighted threshold
and Kalman filter [20]. Compared to these methods, the online
sequential extreme learning machine (OS-ELM) [21], [22] with
spatial information used in the present work is more effective
in distinguishing particles from air bubbles or random noise.
Due to variations in foreign particle size and color across
ampoule injections, it is unreliable to rely solely on calculating
the target’s mean pixel intensity value. Hence, in the super-
vised learning method used in our system, feature vector is
constructed with multiple cues including foreign particle size,
mean gray value, gray variance, geometric invariant moments,
and wavelet packet energy spectrum.

II. SYSTEM DESIGN

A. Hardware Platform
Two stations, a high-speed rotating station (HSRS) and an

abruptly stopping station (ASS), form the rotary platform-based
inspection line, as shown in Fig. 2(a). An active spring-loaded
clamping mechanism [Fig. 2(c)] is designed to stir up foreign
particles from the bottom of the ampoule container. With the
HSRS and ASS stations, automated ampoule movements (i.e.,
steady clamping, high-speed rotation, and abrupt stop) are re-
alized, and smooth moving trajectories of foreign particles are
achieved to facilitate detection.
In the HSRS station, the rotating tray is driven by a motor

located underneath the machine table. It rotates at a speed of
1500 rpm as the injection container triggers a photoelectric
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Fig. 2. (a) Top view of the automated ampoule inspection system (1. ampoule
injection; 2. input star wheel; 3. photoelectric sensor I; 4. CCD camera;
5. photoelectric sensor II; 6. main rotary platform; 7. output star wheel;
8. baffle; 9. striking fork; 10. rejected products output; 11. qualified products
output). (b) Section view of the automated ampoule inspection machine.
(c) Active spring-loaded clamping mechanism (12. pressure rod; 13. flanged
sleeve; 14. spring; 15. rotatable cap; 16. ampoule injection; 17. rotating tray;
18. V-belt pulley). (d) A snapshot of the constructed system.

sensor. The main rotary platform and input and output star
wheels rotate synchronously through connecting their respec-
tive gears located underneath the machine table, and they
are driven by only one 1.1 kW single-phase induction motor

Fig. 3. Force analysis of when a particle moves in liquid. , , , and
denote gravity, buoyancy, viscous force and centrifugal force of the par-

ticle, respectively.

(YCJ90L2, Regal Beloit Company). The rotating tray and the
pressure rods ensure containers’ steady rotation and reduce the
occurrence probability of air bubbles. Ampoules are stopped
abruptly as they enter the ASS station, and the generated vortex
lifts particles off from the bottom of the ampoule container.
In the meanwhile, CCD cameras are triggered to capture ten
sequential images for foreign particle detection.
As shown in Fig. 2(b), the vision system consists of three

LED light sources (two array-type backlight LED, Schott
Moritex Co., emitting surface dimension: 20 mm 80 mm,
and one bottom LED light source with two fiber heads,
PFB2-20SW-F, CCS Inc., Japan), and four CCD cameras
(MVC685DAM-GE110, Microview; frame rate: 110 fps). In
each of the two ASS stations, two CCD cameras are arranged
to inspect two ampoules labeled with odd and even number,
respectively. Back and bottom light illuminations of the am-
poule injection are applied in each ASS station. The “ampoule
tracing” is realized by the oscillating arm. Object distance of
the camera was set to be 95 mm. The system takes 0.8 s to
complete the inspection of one ampoule, including ampoule
transportation, image capturing and processing, and ampoule
sorting.

B. Kinetics of Moving Particles in Liquid
After rotation and abrupt stopping of the ampoule containers,

ten sequential images were captured to record the trajectory of
particles. Throughout this process, Reynolds number ( ) for
every ampoule injection always satisfies (i.e., tur-
bulent flow and vortices are produced). Foreign particles within
liquid experience several forces, as illustrated in Fig. 3. The dash
line indicates the moving trajectory of the particle. In the ver-
tical direction, forces include gravity , buoyancy , and the
vertical component of viscous force . In the horizontal direc-
tion, there are centrifugal force and horizontal component
of viscous force . Hence, net forces in the vertical direction

and the horizontal direction are

(1)

(2)
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where is liquid density; is particle density; is diameter
of the foreign particle; and are horizontal and vertical
components of particle's linear moving velocity; and are
rotating radius and angular velocity of the particle. According
to Newton’s second law, (1) can be rewritten as

(3)

Assume the initial condition to be , then
is

(4)

where , and
. Denote the camera’s

frame rate by , then the moving distance in the vertical direc-
tion between the first and th frames is

(5)

These sequential values and smooth trajec-
tories significantly facilitate the differentiation of foreign parti-
cles from air bubbles or other disturbances.

III. PARTICLE RECOGNITION

Among machine learning methods, SVMs are only directly
applicable for two-class tasks, making it unsuitable for particle
classification in ampoule inspection. The classification accuracy
of SVMs highly depends on kernel selection, kernel’s parame-
ters, and soft margin parameter. In comparison, online sequen-
tial extreme learning machine (OS-ELM) [21] is faster by or-
ders of magnitude in learning and prediction than SVMs [23],
[24] and back-propagation algorithms [25], [26]. Furthermore,
parameters (e.g., learning rate or stopping criteria) of OS-ELM
do not require manual tuning. For the purpose of distinguishing
particles from air bubbles using OS-ELM, this work proves that
spatial information (i.e., coordinates of object centroid) must be
applied to construct a target's moving trajectory. The trajectory
of a moving particle is continuous and downward while an air
bubble’s trajectory is continuous and upward. This spatial-based
OS-ELM approach is experimentally proven in this work to be
effective in foreign particle classification, especially for accu-
rate differentiation of air bubbles from glass chips. Fig. 4 shows
the flowchart for the recognition of foreign particles. Key steps
are highlighted in blue and discussed in the following sections.

A. Feature Extraction

Features of tiny foreign particles in ampoule injection in-
clude area, shape, mean gray value, and statistical properties.
Extracted features should ideally have significant differences
among classes and have little change in translation and rotation
for the same target in sequential images. Therefore, besides par-
ticle area, mean gray value and gray variance, features including
Hu’s invariant moments, Zernike moment , ratio be-
tween length and width of the minimum bounding rec-
tangle, and occupation ratio of the particle are also in-
cluded in the feature vectors.

Fig. 4. Flowchart of foreign particle detection and classification using the spa-
tial OS-ELM method.

Fig. 5. Normalized wavelet packet energy spectrum. (a) Difference image
with fiber, glass chip, and random noise which are labeled with red rectangular.
(b), (c) and (d) Show the wavelet packet energy spectrum of glass chip, fiber
and random noise, respectively.

From the perspective of energy, the various kinds of foreign
particles in ampoule have different energy distributions. One-di-
mensional signal is constructed through accumulating target’s
pixel gray values vertically. Energy distribution is then depicted
through calculating the wavelet packet energy spectrum of this
signal. Fig. 5 shows an example of energy distribution variations
among glass chip, fiber, and random noise. It was found that five
decomposition levels of the wavelet packet are sufficiently ac-
curate to interpret fine details of the signal. Principal component
analysis [27] is applied to reduce the dimension of calculated
wavelet packet energy spectrum. In Fig. 5, normalized maximal
energy appearing at first, fourth, and eighth principal compo-
nent denotes glass chip, fiber and random noise, respectively.
Hence, four principal components of object’s wavelet packet
energy spectrum are also included in the feature
vector which dimension reaches 17, where subscript “5” is the
decomposition level of the wavelet packet.
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B. Classification and Trajectory Construction
Assume the number of images is , the number of objects in

each image is , the number of extracted features of each object
is . Hence, the feature vector can be generalized as

(6)

where , , denote the ordinal number of frame, object, and
feature, respectively. If the number of object in the th image is
, extracted feature vector can be written as

Its matrix format is

(7)

Connecting the elements of ( )-dimensional matrix
row by row and differentiating them from each other with

OS-ELM, ( 1)-dimensional column vector is

(8)
Those objects grouped into one class are considered the same

target. For instance, if , , , , and are grouped
into one class, then the third object in frame 1, second object
in frame 2, fifth object in frame 3, third object in frame 4, and
second object in frame 5 are considered the same target. The
moving trajectory of the object is constructed by connecting
these centroids of the same target across sequential images.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Training Dataset Construction
In experiments, 1000 ampoules containing typical foreign

particles (e.g., glass chips, rubber chips, fiber, and hair), were
selected by certified technologists. The system captured five se-
quential images of each ampoule after ampoule rotation and
abrupt stopping. Hence, a (5000 18)-dimensional matrix was
constructed with 17 foreign particle features and 1 type index
( ). Here, TI has values of 1, 2, 3 or 4, denoting glass chips,
rubber chips, fiber, and hair, respectively

...
...

...
...

...
...

...
...

...

(9)

where ; are Hu’s seven invariant moments
; is the Zernike moment; , and are

area, , and ; is the wavelet packet energy spec-
trum; , and denote the mean gray value, variance and
type index of the foreign particles.

Fig. 6. Ten sequential ampoule images; all targets are extracted and labeled
with red squares after image preprocessing. Labeled numbers in every image
are determined by abscissa of the target.

B. Trajectory-Based Particle Recognition
Ten captured sequential images of an ampoule injection, con-

taining fiber and glass chip, were randomly selected as an ex-
ample to evaluate recognition accuracy. Besides foreign parti-
cles, air bubble and random noise also appeared in these selected
sequential images. As shown in Fig. 6, each target was extracted
and labeled with a red square after image preprocessing (i.e.,
background subtraction, object segmentation, and labeling). La-
beled numbers in every image are determined according to ab-
scissa of the target.
In these ten images, a (37 17)-dimensional feature matrix

generated by 37 targets were normalized and classified by
OS-ELM. The number of normalized datasets was determined
by the maximum number of objects in every image. In this
example, four groups should be achieved (i.e., objects “ ,

, , , , , , , , ,” “ , ,
, , , , , , , ,” “ , , , ,
, , ,” and “ , , , , , , , ,
, ” ) and classified into glass chip, air bubble, random

noise, and fiber, respectively. As illustrated in Fig. 7, moving
trajectories of the objects within each group were constructed
by connecting their coordinates frame by frame.
As shown in Fig. 7(a) and (b), experimental trajectory of

foreign particle with larger density (e.g., fiber and glass chips)
is downward while air bubble’s trajectory is upward, which
is consistent with estimates from (5). It can also be observed
that rotation radius of the target becomes smaller with particles
falling down or air bubbles floating up due to liquid viscosity.
In the model described in Section II-B, particle’s shape is
assumed to be spherical. This simplification was made for mod-
eling feasibility since different types of impurities (e.g., glass
chips, rubber chips, and fibers) have varied shapes. Although
different shapes can lead to modeling differences, the simplified
model with the spherical shape assumption was experimentally
proven effective for predicting particle trajectories, as shown
in Fig. 7(a) and (b). In Fig. 7(c), random noise disappeared in
some images (see frames 4, 6, and 9) and its trajectory displays
random fluctuations. Therefore, foreign particles in ampoule
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TABLE I
COMPARISONS OF LIBSVM, ELM, AND SPATIAL OS-ELM (CPU: INTEL CORE I5,

RAM: 4 GB, WINDOWS 7 PROFESSIONAL, MATLAB 2013A)

Fig. 7. (a) and (b) Experimental trajectories of glass chip and air bubble. Serial
number (1)~(10) represent the image frame number. (c) Trajectories of glass
chip, random noise, fiber and air bubble, constructed through connecting their
coordinates frame by frame.

injection can be differentiated from air bubbles and random
noise according to their distinct moving trajectory trends.
Particles with large density (versus air bubbles and random

noise) are classified using the proposed spatial OS-ELM algo-
rithm. Comparisons of spatial OS-ELM, SVM, and ELM algo-
rithms are summarized in Table I in terms of training, testing
time and classification accuracy. The (5000 18)-dimensional
feature vector, discussed in Section IV-A, was used as the same
training dataset, and a (1500 17)-dimensional matrix gener-
ated from additionally captured ampoule images was used as
the testing dataset.

Fig. 8. (a) Comparison of time taken by data training and data testing. (b) Clas-
sification accuracy of data training and data testing.

As shown in Table I and Fig. 8(a), the LIBSVM algorithm
costs more time in both training and testing than the ELM
and spatial OS-ELM approaches. Among the three algorithms,
the ELM method is the most computationally efficient. For
instance, LIBSVM costs more than 250 ms to train the datasets
and almost 20 times longer than the ELMmethod. For the ELM
and OS-ELM methods, sequential operation of 1-by-1 takes the
longest time followed by 20-by-20 and then the batch mode.
Time variations are small for ELM and OS-ELM with different
activation functions. Results summarized in Fig. 8(b) show
that classification accuracies of training and testing for ELM
and OS-ELM with different activation functions are similar.
OS-ELM with 1-by-1 training mode produced the highest clas-
sification accuracy (94.14%) for all types of foreign particles.
We further quantified classification accuracies with and

without considering trajectory trends of particles in spatial
OS-ELM. In our experiments, for determining classification
accuracies, all the foreign particles identified by the tested
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TABLE II
CLASSIFICATION ACCURACIES FOR DIFFERENT TYPES OF FOREIGN PARTICLES AND AIR BUBBLES
(“WITH” AND “WITHOUT” REFER TO WHETHER PARTICLE TRAJECTORIES ARE TAKEN INTO ACCOUNT)

Fig. 9. Classification accuracies between with and without considering trajec-
tory trends of particles.

algorithms were confirmed by a skilled certified technologist.
As summarized in Table II and Fig. 9, the classification accu-
racy for glass chips is dramatically improved from 87.24% to
95.82% when particle trajectory trend is taken into account.
This improvement was achieved because air bubbles were
effectively distinguished from glass chips. Classification ac-
curacies for rubber chips, hair, and fiber are all higher than
96%. Air bubbles were identified with 99.83% accuracy when
their trajectory trends were considered. Due to slight overlap in
appearances and trajectory trends, 2.72% of fibers were mistak-
enly classified to be hair, and 2.27% of hair were misclassified
as fiber.

C. Knapp Test
The “Knapp Test”, designed by the U.S. FDA and European

Pharmacopoeia, is for evaluating the performance of an inspec-
tion system [28]–[30]. In this work, the Knapp Test was con-
ducted using a test set with 170 randomly selected uninspected
injections and 80 injections containing particles from the same
production batch. These 250 injections were mixed randomly
and labeled from 1 to 250. Each injection was first inspected
independently ten times by each of the five certified technolo-
gists who participated in this study, and then was inspected by
the automated inspection system ten times. Two quality factors,

and by manual inspection and automated inspec-
tion of each injection were calculated, where . Take
the 20th injection as an example. If five technologists’ rejection
times are 8, 6, 8, 8 and 9, the total number of rejection is
39. Quality factors of manual inspection is determined
to be , where is the total number of in-
spection (i.e., 50 in this example). The quality factor of manual
inspection is . According to the “Knapp

Fig. 10. Inspection accuracy comparison between manual method and the au-
tomated system.

Test” protocol, only are added. is cal-
culated using the same procedure.
Maximal value of or is [800, 2500]. The larger

for the quality factor, the more accurate the inspection method.
If the ratio (i.e., ) is equal or greater than 1, it
means that the automated inspection system is equivalent or
better than the manual inspection method [29], [30]. In our test,
quality factors of the inspection system and manual method
were 917 and 796, respectively. The ratio of 1.15 proves that
the automated inspection system is superior to manual inspec-
tion in detection accuracy.
To more quantitatively compare the inspection accuracy

between the manual method and our automated system, three
batches of 2 ml-ampoule injections were further tested. In
each batch, 400 ampoule injections containing glass chips,
rubber chips, fiber, and hair (100 ampoules with each type of
particle) were randomly selected and mixed with 400 qualified
injections. Every injection was labeled, then evaluated and
confirmed by the commercial particle counter (e.g., Puluody
PLD-0203, UK). Each batch was inspected by five technolo-
gists independently and by our developed system for five times.
Inspection accuracy is defined as

(10)

where is the number of true positives, is the number of
true negatives, is the number of false positives, and is
the number of false negatives.
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Data are graphically shown in Fig. 10. The average inspec-
tion accuracy was higher than 95.5% for the automated system
(versus approximately 90% for themanual method). In addition,
the standard deviation of automated counting system was sig-
nificantly lower than that of manual inspection, which indicates
higher precision or repeatability achieved by the automated in-
spection system. Scrutinizing the false detected situations re-
vealed that they stemmed from lighting disturbances, attenua-
tion of LED light, and shape variations of foreign particles. For
instance, in a few cases, the reflection plane of glass chips did
not face the CCD camera directly which made the intensity and
contrast of the target significantly lower. Therefore, the glass
chip could disappear for a period, resulting in a broken trajec-
tory. During fast rotation in the liquid, shape variations of slim
fibers could confuse the classifier and lead to a wrongly con-
structed trajectory of the particle. Present work involves the use
of a higher number of sequential images and the development
of algorithms for tracking motion-distorted objects, aiming to
further reduce the false detection rate.

V. CONCLUSION

This paper presented an automated system for detecting and
classifying foreign particles in ampoule injections. Ampoules
were passed through the high-speed rotating station (HSRS) and
moved into the abruptly stopping station (ASS) of the inspection
system. Ten sequential images for each ampoule injection were
captured. Spatial information (i.e., coordinates of the target’s
centroid) was applied to construct target’s moving trajectory
which was used as a foreign particle judging criterion. Multiple
features of a target including area, mean gray value, geometric
invariant moments and wavelet packet energy spectrum were
used in supervised learning for predicting/classifying the type of
foreign particles. The spatial OS-ELM algorithm was proposed
and experimentally proven effective in foreign particle classi-
fication. This approach was highly accurate in distinguishing
air bubbles from glass chips. Experimental results demonstrated
that the automated inspection system achieved high accuracy
and repeatability in foreign particle detection and classification.
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