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A method for calibrating the dynamic torsional spring constant of cantilevers by directly measuring the
thermally driven motion of the cantilever with an interferometer is presented. Random errors in cali-
bration were made negligible (<1%) by averaging over multiple measurements. The errors in accuracy
of ±5% or ±10% for both of the cantilevers calibrated in this study were limited only by the accuracy
of the laser Doppler vibrometer (LDV) used to measure thermal fluctuations. This is a significant
improvement over commonly used methods that result in large and untraceable errors resulting from
assumptions made about the cantilever geometry, material properties, and/or hydrodynamic physics
of the surroundings. Subsequently, the static torsional spring constant is determined from its dynamic
counterpart after careful LDV measurements of the torsional mode shape, backed by finite element
analysis simulations. A meticulously calibrated cantilever is used in a friction force microscopy exper-
iment that measures the friction difference and interfacial shear strength (ISS) between graphene and
a silicon dioxide AFM probe. Accurate calibration can resolve discrepancies between different exper-
imental methods, which have contributed to a large scatter in the reported friction and ISS values in
the literature to date. Published by AIP Publishing. https://doi.org/10.1063/1.5045679

I. INTRODUCTION

Atomic force microscopy enables unique tribological
experiments to be performed because a single asperity
nanoscale contact can be studied. More specifically, friction
force microscopy is used to study the fundamental phenomena
that define friction at the nanoscale by measuring the lateral
forces between the tip and a sample. Quantifying lateral forces
occurring at the tip-sample contact is necessary in accurately
studying friction phenomena and allows for a direct compari-
son of lateral forces between experiments,1–5 simulations,6–9

and theory.10–13

The desire for quantitative measurements of lateral
forces has led to extensive research in cantilever calibration
itself.14–26 Most of these methods involve modeling of the
cantilever and/or its hydrodynamic surroundings27 or require
destructive experimental procedures that may damage the tip
apex.28

This paper presents methodology for calibrating the
dynamic torsional spring constant of a cantilever directly using
an interferometric sensor. The only assumption is that the
equipartition theorem holds true: the average energy of the
torsional mode is 1

2 kBT . The simplicity of the method allows
straightforward error analysis that can be used to track cali-
bration errors. Finally, static torsional stiffness is calculated
from the dynamic stiffness through an analysis of static and
dynamic mode shapes.

II. TORSIONAL CALIBRATION METHODS
A. Instrument

An Asylum Research Cypher AFM was interfaced with a
Polytec laser Doppler vibrometer (LDV) through a modified

blueDrive�29 optical beam positioning unit. This combined
system focuses the LDV laser to a 3-µm spot size and pro-
grammatically positions the laser spot anywhere on the can-
tilever with 100-nm precision. Because the measurement is
interferometric in nature, the sensitivity (nm/V) is based
on the wavelength of light and accurately predetermined
in-factory.

This instrument enables quantitative in situ mapping of
driven cantilever dynamics, as used elsewhere,30 as well as
the calibration of cantilever spring constants through measure-
ment of thermal noise spectra.31,32 The cantilevers character-
ized in this experiment are the Nanosensors� PPP-CONTR
and PPP-FM.

B. Spectrogram calibration method

The measured amplitude of the cantilever thermal motion
depends on the location and the eigenmode (resonance mode)
in question. The power spectral density (PSD) conveniently
separates the contributions from different eigenmodes at any
particular cantilever location, as shown in Fig. 1(a) for a laser
spot positioned at the far edge of the cantilever.

By scanning the laser spot across the cantilever widthwise
and acquiring successive PSDs, a spectrogram of the thermal
motion can be constructed, as in Fig. 1(b). Out of the four
observed eigenmodes, one is clearly the first torsional mode of
the cantilever because its motion reaches zero at the cantilever
center.

Fitting the identified torsional spectrum of each successive
PSD with a simple harmonic oscillator (SHO) model provides
a measure of the amplitude variance A2

rms at every position.
These amplitude fluctuations can be calculated across the
cantilever by integrating each SHO fit, as shown in Fig. 1(c).
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FIG. 1. The spectrogram method performed on a PPP-CONTR cantilever at a distance Lspot from the cantilever base. (a) The PSD of the cantilever thermal
motion (computed by the Daniell method33) was measured at various distances across the cantilever to create (b) a spectrogram where the spectral density is
represented in a gray scale. (c) The torsional peak can be identified and fit with a SHO model to determine the amplitude variance A2

rms as a function of distance
across the cantilever. (d) Fitting the data with Eq. (3) returns the torsional spring constant kθAC . Obtaining the lateral spring constant kL requires the tip height
htip taken from either (e) optical photographs by the Cypher AFM or (f) scanning electron microscope images. Ten spectrogram calibrations of this cantilever
resulted in kθAC = 26.8 ± 0.2 nN m and kLAC = 121 ± 4 N/m. Table III in the Appendix summarizes the parameters used for calculating these spring constants.

For a cantilever that does not bend along its width and
only rotates laterally due to torsional motion, the measured
amplitude A is related to the torsional angle of the cantilever
θ by the radial distance d⊥, as in

A= d⊥θ. (1)

By the equipartition theorem, the torsional fluctuations obey

1
2

kθAC θ
2
rms =

1
2

kBT , (2)

where the dynamic torsional spring constant kθAC is related to
the Boltzmann constant kB and the temperature T. Combining
both equations predicts that

A2
rms =

kBT
kθAC

d2
⊥. (3)

Conveniently, this parabolic relationship can be fit to the
data in Fig. 1(d), resulting in a measurement of kθAC . The
accuracy of the fit suggests that the model presented so far
is appropriate and that the LDV measurement is linear.

Note that the torsional fluctuations were not measured
exactly at the tip location, as can be understood by inspection
of Fig. 1, where Lspot , Ltip. A small correction factor for
this discrepancy (−0.7%) was applied from knowledge of the
torsional mode shape (determined in Sec. III).

The spectrogram calibration method is an elegant way of
measuring kθAC and is worthwhile performing at least once
to validate the assumptions leading up to Eq. (3) to ver-
ify the stability of the system and the linearity of the LDV.
However, this method is not efficient because most of the
time is spent measuring no signal near the center of the
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FIG. 2. The two-point calibration method was performed on a PPP-FM cantilever. (a) The thermal noise was measured at two locations; (b) the distance between
both laser spot locations was determined optically; and the distance of the laser spot to the base was also determined optically, while the distance to the tip used
(c) an SEM image of the cantilever. The torsional spring constant was calculated by Eq. (5) as kθAC = 66.4 ± 0.5 nN m from ten repeated measurements. The
lateral spring constant kLAC = 284± 5 N/m from a tip height SEM measurement. Table III in the Appendix summarizes the parameters used for calculating these
spring constants.

cantilever. Section II C presents a more time-efficient method
for measuring kθAC .

C. Two-point calibration method

The torsional calibration can be sped up by measuring the
amplitude variance A2

rms only near the edges of the cantilever,
where the signal-to-noise ratio is highest. In fact, because
the parabolic function [Eq. (3)] fits the data impeccably in
Fig. 1(d), only two measurements are required to define kθ
accurately.

Two amplitude measurements (A1, A2) at any two posi-
tions across the cantilever allow the determination of the
cantilever angle by

θ =
A1 − A2

∆d⊥
, (4)

where only the distance between both positions ∆d⊥ is
required. This conveniently avoids the need to define the can-
tilever center and reduces any associated errors. Note that the
amplitudes, as defined here, differ in sign if measured on either
side of the cantilever long-axis.

Here, the torsional spring constant is measured directly
by

kθAC =
kBT(

Arms,1 + Arms,2
)2
∆d2
⊥. (5)

This method was performed on a cantilever in Fig. 2.
The stiffness correction for the misalignment between

the laser spot and the cantilever tip (Lspot , Ltip as seen in
Fig. 2) was−0.2% as calculated from the torsional mode shape
(determined in Sec. III).

III. DYNAMIC TO STATIC CONVERSION

So far, the dynamic stiffness of the first eigenmode was
measured by virtue of using the thermal noise as a signal.
This section relates the dynamic torsional stiffness kθAC to
the static torsional stiffness kθDC . The mode shapes of both

static and dynamic torsional modes (φDC and φAC) relate both
stiffnesses by50

kθAC

kθDC

=

1∫
0

(
∂φAC(x)
∂x

)2

dx

1∫
0

(
∂φDC(x)
∂x

)2

dx

, (6)

where x is the distance along the long axis of the cantilever,
normalized such that x = 1 is at the cantilever end.

Note that this treatment is analogous to normal deflection
modes,34,35 where the static stiffness is∼3% softer than the first
eigenmode stiffness for an ideal Euler-Bernoulli beam because
of slight differences in the mode shape.36 This distinction is
often disregarded due to the small discrepancy. However, in
the context of torsional modes, the static and the first dynamic
mode shapes differ substantially.

For an ideal circular shaft fixed at one end, the first
eigenmode shape analytically solves to36

φAC(x)= sin
(
π

2
x
)
, (7)

while the static mode shape is simply linear, as in

φDC(x)= x. (8)

In this case, Eq. (6) becomes

kφAC

kθDC

=
π2

8
≈ 1.234. (9)

For the record, higher eigenmode shapes correspond to odd
harmonics of the first sinusoidal eigenmode shape in Eq. (7),
but they are not studied here.

The assumption of circular symmetry [necessary to derive
Eq. (9)] is not met in practice. Real cantilevers typically have
a rectangular or trapezoidal cross section with a large aspect
ratio. Non-axisymmetric beams undergo warping when torsion
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is applied.36 This changes the mode shape slightly near the can-
tilever base, as observed by the LDV mode shape mapping in
Fig. 3(a). Finite element analysis (FEA) of a cantilever with
identical dimensions reproduces the measured mode shape
very closely. The deviation from expected behavior near the
cantilever base is caused by in-plane compression/tension
waves that dominate over the transverse shear waves that make
up the mode shape [as confirmed by inspection of FEA results
and depicted in Fig. 3(a)].

Furthermore, real cantilevers have tip masses and tapered
plan views, such as the PPP-CONTR and PPP-FM cantilevers
measured so far. FEA simulations, backed by LDV measure-
ments, demonstrate only modest mode shape differences rel-
ative to an ideal circular shaft, as shown in Fig. 3(b). In this
case, the additional amount of the mode shape curvature con-
tributed to an increase in kθAC relative to circular shaft theory;
however, the increase was well within the 10% measurement
error of the LDV.

Given the modest deviations between these real cantilever
and ideal circular shafts, Eq. (9) can be used as a good approx-
imation for relating kθAC to kθDC for the cantilevers charac-
terized so far. This is expected to be a conservative estimate

FIG. 3. (a) A cantilever that is the closest available representation of an Euler-
Bernoulli beam (NOCAL) was driven at its first torsional resonance frequency.
The LDV measurement of the torsional mode shape matches the FEA sim-
ulation very closely (no fitting parameters were used other than scaling the
amplitude of the FEA result). Due to the rectangular cross section, the mode
shape deviates from an ideal circular shaft. This deviation is caused by an
in-plane compression/tension profile, which is depicted by arrows on the inset
cantilever. (b) The mode shape of the PPP-FM cantilever used in Fig. 2 was
measured, and FEA was performed. The tip mass causes some additional
deviations from circular shaft theory that increases the torsional stiffness.

as non-idealities cause an additional curvature in the tor-
sional mode shape, and Eq. (9) does not account for in-plane
compression/tension that also stores energy during oscillation.

More rigorous FEA studies are necessary to obtain accu-
rate estimate of kθAC/kθDC for intricate cantilever geometries. In
the interim, the relationship from Eq. (9) was used to analyze
the data presented in this paper.

IV. TORSIONAL TO LATERAL CONVERSION

In previous sections, the torsional spring constant was
measured. The lateral spring constant requires the tip height
htip and can be calculated by

kL =
kθ
h2

tip

, (10)

where kθ may represent the static or dynamic stiffness depend-
ing on the context. The tip height was measured by an optical
photograph, as well as by SEM imaging, as shown in Fig. 1.

With a known cantilever lateral stiffness, the sensitivity of
the optical beam deflection system (in units of nm/V) can be
calibrated by measuring the thermal motion of the cantilever
and enforcing the equipartition theorem. This is typically per-
formed for normal deflection of the cantilever37,38 but applies
to the lateral deflection as well. However, there are compli-
cations that arise for typical cantilevers when calibrating the
lateral sensitivity: the lateral stiffness of the tip apex17 and
the in-plane lateral bending stiffness16 of the cantilever may
be comparable in magnitude to the lateral stiffness of the can-
tilever measured so far. The consequence of having these three
springs in series is that the true displacement of the tip may
be significantly underestimated:39 some of the displacement
is caused by the tip apex and in-plane bending which are
not measured by the optical beam deflection system which
is only sensitive to angular changes in the cantilever. Quan-
titative interpretation of the lateral displacement of the tip
apex in a friction force microscopy experiment requires careful
consideration of these sources of error.

Other considerations, such as the coupling of normal
and lateral forces due to the cantilever tilt,40 should also be
considered when interpreting tip-sample interactions.

V. ERROR ANALYSIS

The fact that the calibration procedures presented so far
take direct measurements of torsional thermal fluctuations
allows for a meaningful error analysis, as presented in this
section. By Eq. (3), errors in kθ arise from errors in A2

rms and
∆d2
⊥, both of which will now be discussed in terms of accuracy

and precision.
The Cypher AFM optics were calibrated with a calibra-

tion grid and determined to be 99.5% accurate across the field
of view, leading to relative errors <1% on ∆d2

⊥. These sources
of error are negligible compared to errors in A2

rms due to the
limited accuracy51 of the LDV and frequency dependence of
its signal response. For the PPP-CONTR cantilever, there is
an estimated error of roughly ±5% in A2

rms, which translates
directly to errors in kθ . For the PPP-FM cantilever, this error
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is estimated at ±10% because the error is larger at a high fre-
quency for this LDV. Note that these errors are specific to the
particular LDV model used here and not inherent to the LDV
method itself, which may be much more accurate on different
interferometric sensors.

On the other hand, all sources of random errors in the cal-
ibration were measured by repeating the calibration procedure
ten times for each cantilever. This was deemed sufficient as
the random errors (<1%) fell well below the accuracy errors
described in the previous paragraph. These repeated mea-
surements account for random errors in both A2

rms and ∆d2
⊥

simultaneously.
Finally, calibrating the lateral spring constant kL intro-

duces errors associated mostly with measuring the tip height.
In this case, SEM images lead to a significant reduction in the
error with respect to optical images. In fact, the error in the
SEM-measured tip height is overshadowed by the errors in
accuracy in measuring kθ in the first place.

VI. COMPARISON OF CALIBRATION METHODS

Both calibration methods presented so far (collectively
referred to as the LDV method henceforth) are now compared
to two commonly used calibration methods: the geometry
method41 and the Sader method.27 The mathematics behind
these methods are presented in the Appendix, while the results
are presented in Table I.

The geometry and Sader methods for measuring kθDC

both assume that the cantilever has a rectangular cross sec-
tion with a length that greatly exceeds the width, a width
that greatly exceeds the thickness, and the absence of a
cantilever tip. Furthermore, the geometry method requires
knowledge of the elastic and shear moduli, which can vary
significantly.42,43 Also, the Sader method assumes planar
laminar flow around the cantilever by an incompressible
fluid44 and assumes that the tip is at the very end of the
cantilever. Because of these limitations, an accurate error
analysis is difficult for these two calibration methods, and
only the calibration of cantilevers with specific geometries is
possible.

TABLE I. Comparison of methods for the torsional and lateral spring con-
stant calibrations for the PPP-CONTR and PPP-FM cantilevers. The reported
errors are random errors that stem from averaging ten repeated measurements.
The accuracy of the PPP-CONTR calibration is ±5%. The accuracy of the
PPP-FM calibration is ±10%. Table I in the Appendix summarizes the
parameters used for calculating these spring constants.

Static torsional Static lateral
spring constant spring constant

kθDC kLDC

(10�9 N m/rad) (N/m)

Geometry method 26.9 113
PPP-CONTR Sader method 20.6 86.8

LDV method 21.7 ± 0.2 98 ± 3

Geometry method 86.0 415
PPP-FM Sader method 57.0 275

LDV method 53.8 ± 0.5 230 ± 4

The trapezoidal cross section of these cantilevers, the alu-
minum coating on the PPP-CONTR cantilever, variations in
moduli, the existence of a tip, as well as deviations from
ideal hydrodynamic behavior may contribute to the deviations
between the calibration methods presented in Table I.

On the other hand, the LDV method for measuring kθAC

only assumes that the torsional mode is solely driven by ther-
mal forces, which is a very good approximation in ambient
conditions. This fact enabled the meaningful error analysis per-
formed in Sec. V. Importantly, the lack of assumption allows
the LDV method to calibrate cantilevers of the arbitrary shape.
Finally, although the mode shape correction factor that relates
kθAC to kθDC was derived for an ideal circular shaft, it can be
refined by FEA simulations and backed by LDV mode shape
measurements.

An important distinction of the LDV method is that it
natively measures the dynamic spring constant, while the static
spring constant is inferred from the mode shape. On the other
hand, the geometry and Sader methods measure the static
spring constant of the cantilever directly. Depending on the
context, either kθAC or kθDC may be required. Experiments with
driven torsional modes require the use of kθAC , while typi-
cal sub-resonance friction force microscopy requires the use
of kθDC .

As can be seen in Table I, the Sader method agrees more
closely to the measurements taken with the LDV method than
to the geometry method for the specific cantilever geometries
tested here. The geometry method highly overestimates kθ
presumably because it is based on assumptions that are far
from valid in practice. It is, however, difficult to draw strong
conclusions about the absolute accuracy of the Sader method
versus the geometry method until larger scale studies are
performed.

Finally, it is important to note that instruments based on the
optical beam defection (OBD) method are in principle better
suited than a LDV for calibrating the torsional spring constant
of cantilevers. This is because the OBD method measures the
angular deflection of the cantilever by nature,45 which is the
native variable for cantilever torsion as can be understood from
Eq. (2). Such instruments can also map the mode shape of
cantilevers46,47 as was performed here. However, due to their
limited accuracy, these methods do not provide an absolute cal-
ibration standard. Although the LDV and other interferometric
methods natively measure the displacement of the cantilever,
as opposed to its angular deflection, the fact that they are inher-
ently calibrated by the wavelength of light makes them more
suited for the high accuracy calibration of cantilever spring
constants.

VII. RESULTS

The PPP-FM cantilever calibrated in Fig. 2 was used to
measure the lateral force in a friction force microscopy exper-
iment performed on graphene-on-silicon dioxide and pure
silicon dioxide substrates as a function of the applied normal
load. The experiment is summarized in Fig. 4.

The relationship between the lateral force and normal load
was fit to a Maugis–Dugdale model12 for data on graphene and
on silicon dioxide. The resulting fit parameters (pull-off force
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FIG. 4. (a) Lateral force map of graphene on silicon dioxide is shown. (b) Trace and retrace of the lateral force from the cross section in (a) is plotted. (c) The
lateral forces on silicon dioxide and graphene were averaged for the whole image in (a) and plotted versus the normal force. The Maugis-Dugdale model (dashed
line) was fit to the data. The static lateral stiffness was calibrated in Fig. 2 to kLDC = 230 ± 4 N/m with ±10% error in accuracy. The normal spring constant was
measured to be 3.17 ± 0.03 N/m with ±5% accuracy using a protocol established elsewhere.32

TABLE II. Summary of the ISS measured in Fig. 4 and a comparison to other
experiments.

Interfacial shear strength (MPa)

Tip to graphene Tip to SiO2

LDV method 128 1715
Sader method 112 1510
Geometry method 169 2280
Chen and Filleter48 173 ± 13 1930 ± 282

and contact radius) can be used to calculate the interfacial shear
strength (ISS) between the AFM tip and the contact substrate
according to Carpick’s fitting protocol.13

Whereas the lateral-to-normal relationship on both
graphene and SiO2 is qualitatively consistent with previous
experiments,49 the resulting interfacial shear strengths differ
from those measured herein (see Table II). The quantitative
discrepancy may be attributed in part to errors in torsional cal-
ibration methods. The LDV method for the direct calibration
of torsional spring constants can be used as a standard with
traceable errors for the reducing scatter in friction and ISS
measurement of future experiments.

VIII. CONCLUSION

A method was presented for measuring the dynamic tor-
sional spring constant of a cantilever by direct interferometric
measurement of its torsional thermal fluctuations: the LDV
method. By avoiding assumptions about the cantilever geom-
etry, material properties, and/or the hydrodynamic properties
of its environment, the LDV method allows the calibration of
cantilevers of arbitrary shapes with high accuracy.

The static torsional spring constant can be calculated from
the dynamic one by mode shape analysis. Analytical approx-
imations of mode shapes were shown to be good approxima-
tions and can be refined through FEA simulations or direct
mode shape measurement by LDV mapping.

The lateral spring constant can be calculated from the
torsional spring constant with knowledge of the tip height:
measured either optically or, ideally, from a SEM image of the
cantilever.

A cantilever with a calibrated lateral stiffness within
±10% accuracy and <1% random error was used to measure
the friction and interfacial shear stress (ISS) between a silicon
dioxide AFM tip and graphene. Such quantitative studies may
help to explain the quantitative scatter in the measured friction
and ISS in experiments to date and allow for a more meaning-
ful comparison to simulations and theory used to improve our
understanding of nanoscale phenomena.
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APPENDIX: MATHEMATICAL DETAILS
1. Geometry method

The geometry method assumes that the cantilever can be
described as an Euler-Bernoulli beam and directly calculates
the torsional stiffness from the shear modulus G, the width w,
the thickness t, and the length L of the beam by41

kθDC =
Gwt3

3L
. (A1)

In the absence of a high quality side-view SEM image of
the cantilever, an indirect measurement of thickness t

∗

may
be inferred from a measurement of the first normal resonance
frequency f N by41

t∗ =
2
√

12π

1.8752

√
ρc

E
× fN × L2, (A2)

where ρc is the density of the cantilever material and E is
Young’s modulus. This equation applies to singly clamped
Euler-Bernoulli beams. Because t

∗

is most often used in typical
experimental settings and resulted in better estimates of the
torsional stiffness (closer to the LDV method), t

∗

was used
when calculating Eq. (A1) in this paper.

Specifically for the cantilevers calibrated in this paper, the
length up to the tip Ltip was used for L in both Eqs. (A1) and
(A2), instead of the full length Lfull, because the material past
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TABLE III. Parameters describing the PPP-CONTR and PPP-FM cantilevers
and their environment.

PPP-CONTR PPP-FM

Parameter Units Optical SEM Optical SEM

Lfull µm 464.8 ± 1 465.2 ± 1 230.1 ± 1 232.4 ± 1
Ltip µm 446.7 ± 1 445.2 ± 1 224.0 ± 1 226.2 ± 1
Lspot µm 431.9 ± 1 N/A 210.9 ± 1 N/A
w µm 51.6 ± 1 52.8 ± 1 32.8 ± 1 33.8 ± 1
htip µm 14.9 ± 1 15.4 ± 0.1 15.3 ± 1 14.4 ± 0.1
t µm N/A 2.0 ± 0.1 N/A 3.1 ± 0.1

t
∗

µm 2.154 2.966
f N kHz 14.93 81.76
f kHz 251.77 1159.66
Q 248 ± 5 546 ± 10

E GPa 170
G GPa 68
ρC kg/m3 2328
ρ kg/m3 1.18
η µPa s 18.6

the tip does not contribute to the static torsional stiffness at
the tip.

2. Sader method

The Sader method assumes that the hydrodynamic flow
around the cantilever can be described as laminar and moving
in-plane perpendicular to the long axis of the cantilever by
an incompressible fluid. The torsional stiffness can then be
calculated by

kθDC = 0.1592ρw4LQω2
Γi(ω |η, ρ, w), (A3)

where ρ is the air density and Γ(ω|η, ρ, w) is the hydrodynamic
function that is defined elsewhere44 and is also a function of
the air viscosity η.

Specifically for the cantilevers calibrated in this paper, the
length up to the tip Ltip was used for L, instead of the full length
Lfull, because the mass and hydrodynamic loading become
negligible as the cantilever apex tapers off beyond the tip.

3. Calibration parameters

All the calibration parameters used to calculate the spring
constants in Table I are summarized in Table III.
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