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Regulation in Ex Vivo Heart Perfusion
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Abstract— This brief proposes the first model reference
adaptive control (MRAC) method for aortic pressure (AoP)
regulation and maintaining the heart’s physiological aerobic
metabolism in ex vivo heart perfusion (EVHP). A mathematical
model of the EVHP was established to describe the hemodynamic
behavior of EVHP and quantify the changes in cardiac para-
meters. A reference model consisting of a virtual proportional–
integral–derivative (PID) controller and the EVHP model was
employed to generate the reference trajectory of AoP. An adap-
tation algorithm tunes the control parameters based on the refer-
ence model and the isolated heart. Experiments were conducted
using large animal hearts (50 ± 5 kg porcine) to validate the
adaptive controller’s performance for stepwise and fast switching
AoP references. The results confirmed the effectiveness of the
proposed controller for regulating the AoP in isolated porcine
hearts, in an accurate (mean error less than 2 mmHg) and fast
(4–8 s of settling time) manner.

Index Terms— Automated organ perfusion, closed-loop control,
Ex vivo heart, model reference adaptive control (MRAC).

I. INTRODUCTION

THE Ex vivo perfusion of an isolated heart with oxy-
genated and nutrient-enriched perfusate is critical for

heart transplantation [1]–[3]. In ex vivo heart perfusion
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(EVHP), aortic pressure (AoP) regulation plays an impor-
tant role in maintaining the heart’s physiological aerobic
metabolism. In current EVHP, AoP is manually regulated
based on trial and error [4], [5]. Delays and large fluctuations
(e.g., overshoot >5% of mean AoP) in AoP regulation affect
heart’s normal metabolism and cause irregular heartbeat and
organ damage [6]. Ideally, AoP regulation should be performed
by a closed-loop controller built with exact knowledge of
isolated hearts. However, an important challenge faced during
EVHP controller development is that cardiac parameters vary
significantly during perfusion and across different hearts. For
instance, hearts are rewarmed from 4 ◦C to 37.6 ◦C in
perfusion; with the increasing heart temperature, the coronary
vascular resistance drops rapidly (>50% reduction) [7]. The
changes in cardiac parameters pose challenges to achieve
smooth and fast transient response in AoP regulation.

Closed-loop blood pressure controllers for other organ
perfusion systems (e.g., kidney and liver perfusion systems)
based on model-free methods have been developed, in which
proportional–integral–derivative (PID) is the main control
method. For instance, Plaats [8] developed a PID controller
to keep the perfusion pressure at a preset level in ex vivo
liver perfusion. Post et al. [9] implemented a PID controller
in an ex vivo kidney perfusion system for pressure regulation.
Campos-Delgado et al. [10] proposed a PD controller to
maintain a desired renal perfusion pressure. For these PID
controllers, gain selection was not intuitive and required gain
scheduling had to be appropriately tuned for different organs.
Kornuta and Dixon [11] developed a linear explicit model
predictive controller for ex vivo Lymphatic vessel perfusion.
However, their identification model and model predictive con-
trol law are purely linear, and the predictive capabilities and
dynamic control performance of the system are limited due to
the inherent nonlinear behavior of isolated organs.

Despite the previous efforts in developing blood pressure
regulation technologies for organ perfusion, the development
of an AoP control system with satisfactory transient perfor-
mance for isolated hearts has not been achieved due to the
changes in cardiac parameters. To tackle the parameter-varying
plant, one feasible approach is to estimate these varying
parameters and adjust the controller based on the estimation
results [12]. However, the complexity of the EVHP process
makes it difficult to find an explicit relationship between the
parameters of the plant and the controller performance.

This brief presents a model reference adaptive con-
trol (MRAC) method for regulating AoP in EVHP.
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Fig. 1. Electrical analog of EVHP model.

In literatures, MRAC has been employed to handle model
complexity and disturbance in applications such as rotor
control [13], [14], bending actuators control [15], [16], and
voltage/current control [17]–[19]. The contributions of this
brief are as follows.

1) A mathematical model is established to describe the
hemodynamic behavior of EVHP and quantify the
changes in cardiac parameters.

2) The EVHP model combined with a virtual PID con-
troller forms a closed-loop reference model. Virtual PID
gains are tuned based on the updated cardiac parameters
to generate the reference trajectory of AoP.

3) An adaptive algorithm is designed to adapt to the car-
diac changes and achieve AoP regulation rapidly and
smoothly.

Experiments were conducted using large animal hearts
(50 ± 5 kg, 6 pig hearts). The results show that the proposed
MRAC is capable of regulating the AoPs of isolated pig
hearts in an accurate (mean error less than 2 mmHg) and fast
(4–8 s of settling time) manner.

II. MODELING OF EVHP

This section describes the mathematical modeling and
hemodynamic characteristics of the EVHP system. Previous
studies suggest that EVHP can be elucidated by a coronary
circulation model [20]. However, such a model does not
account for the effect of left ventricular pressure on AoP
through the aortic valve when the left ventricle is primed
with perfusate in EVHP. Therefore, in our model, a coronary
circulation model is integrated with the perfusion/ventricle
coupling model (Fig. 1). Table I lists the state variables of
EVHP, and Table II lists cardiac parameters that change over
time and across different hearts.

Flow inertia (Lm and Ls) and compliance (Cd ) of the distal
vessels are integrated with the coronary model to better reflect
the effect of coronary pressure fluctuations on AoP compared
to previous models in [20] and [21]. According to Kirchhoff
laws, the system impedance is

pa − p1 = Rsqa (1)

Cs
d p1

dt
= q1 (2)

p1 − p2 = Ls

(
dq2

dt
+ dq3

dt
+ dq4

dt

)
. (3)

TABLE I

STATE VARIABLES OF EVHP

TABLE II

CARDIAC PARAMETERS OF EVHP

The macro coronary impedance is

p2 − p3 = Rm (q2 + q3 + q4) (4)

Cm

(
d p3

dt
− d pim

dt

)
= q2 (5)

p3 − p4 = Lm

(
dq3

dt
+ dq4

dt

)
(6)

where pim is the intramyocardial pressure. Distal coronary
impedance is

p4 = Rdq3 (7)

Cd
d p4

dt
= q4. (8)

Aortic flow qa is the sum of q1, q2, q3, and q4
i.e., qa = q1 + q2 + q3 + q4. Clinically, MAP is
calculated by

MAP =
∫ t1

t0

pa

T
dt ≈ 1

3
pa (t) + 2

3
pa (t) (9)

where t0 is the start time of the cardiac cycle, t1 is the end
time of the cardiac cycle. T = t1 − t0 is the cardiac cycle
time. pa(t) = min(pa) and pa(t) = max(pa) during each
cycle T .

In diastole, the muscle of the heart is relaxed and the left
ventricular pressure plv is much lower than the AoP generated
by the perfusion flow qp . The diode is open-circuited and
qa = qp during this period. Thus, the hemodynamic behavior
of the model is determined by qp and pim. Equation (1)
becomes

pa − p1 = Rsqp. (10)
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In systole, the heart contracts, and plv generated by the heart
contraction is higher than the AoP generated by the perfusion
flow qp . The diode is short-circuited and pa = plv− pc during
this period, where plv is the left ventricular pressure and pc

is a constant pressure drop [22]. The aortic flow qa equals the
sum of the perfusion flow qp and the blood flow generated
by the left ventricle contraction in systole. The hemodynamic
behavior of the model is determined by plv. Equation (1)
becomes

plv − pc − p1 = Rsqa. (11)

The state equation for the EVHP model is[
d x (t)

dt
y (t)

]T

=
[

A (t) B (t)
C 0

] [
x (t)
u (t)

]
+ X (t) δ (t) (12)

where state vector x(t), disturbances δ(t), control variable
u(t), and output variable y(t) are

x (t) = [
MAP p1 p2 p3 p4 q1 q2 q3 q4

]T

δ (t) = [
δ1 (t) δ2 (t)

]T =
[

d plv
dt

d pim
dt

]T

u (t) = dqp
dt , y (t) = MAP.

(13)

δ1(t) and δ2(t) are determined by the heart (e.g., heart con-
tractility, heart rate and heart size), which cannot be predicted.
u(t) can be directly controlled by the perfusion system. From
(2)–(9), the state matrix A(t), control matrix B(t), output
matrix C , and disturbance matrix X(t) are described as

A (t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

T
0 0 0

Rs

T

Rs

T

Rs

T

Rs

T

0 0 0 0 0
1

Cs
0 0 0

0
Rm

Ls

−Rm

Ls
0 0 0

1

Cm
0 0

0 0 0 0 0 0
1

Cm
0 0

0 0 0 0 0 0 0
1

Cd
0

0
−1

Ls

1

Ls
0 0

−J (t)

RsCs
0 0 0

0
1

Ls

−1

Ls

−1

Ld

1

Ld
0 0 0 0

0 0 0
1

Ld

−1

Ld
0 0

−1

Rd Cd
0

0 0 0 0 0 0 0
1

Rd Cd
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B (t) = [

0 0 0 0 0 1− J (t) 0 0 0
]T

C = [
1 0 0 0 0 0 0 0 0

]
X (t) =

⎡⎣0 0 0 0 0
J (t)

Rs
0 0 0 0

0 0 1 1 0 0 0 0 0 0

⎤⎦T

. (14)

The indicator function J (t) is introduced because the hemody-
namic model of the EVHP is different in diastole and systole.
Here, J (t) describes the short-circuit and open-circuit behavior
of the diode

J (t) =
{

1, systole

0, diastole.
(15)

Fig. 2. Block diagram of the adaptive control system.

III. CONTROLLER DESIGN

To tackle the uncertain and time-varying cardiac parameters,
we developed an MRAC method for AoP regulation in EVHP.
Fig. 2 depicts the block diagram of the proposed adaptive con-
trol system. The target MAP [denoted as um(t)] and measured
MAP [denoted as y(t)] are the input and output of the system,
respectively. A reference model comprising a virtual PID
controller and a mathematical model of EVHP is established to
produce reference trajectories of MAP. Cardiac parameters and
the virtual controller gains are updated in real time to make
the model always adapting to the changes in the plant. By
tracking the reference trajectory, an adaptive algorithm realizes
optimized AoP control. The difference between target MAP
and measured MAP is used as feedback to tune the control
gains to compensate for the dynamic error in AoP regulation.

A. Cardiac Parameter Estimation

The time-varying cardiac parameters are estimated as

S∗ = arg min
S

(
RMSE

(
pa,t0→t1, p̂a,t0→t1

))
(16)

where RMSE is the root-mean-square error method, pa,t0→t1
is the trajectory of measured AoP from t0 to t1, and p̂a,t0→t1 is
the prediction of AoP trajectory, which is predicted by our per-
fusion model. S = {Rs Cs Ls Rm Cm Lm Rd Cd} represents
the cardiac parameter configuration. Using the measured flow
rate as input to the EVHP model, we fit the predicted AoP
waveform to the measured AoP waveform by adjusting the
cardiac parameters in the physiological range. The estimation
of cardiac parameters is performed via “trial-and-error.” A
few iterations in practice suffice. The values of the cardiac
parameters that minimize the difference between p̂a,t0→t1 and
pa,t0→t1 i.e., RMSE of the AoP waveform are the best estimate
of S∗ [12], [25].

B. Reference Model

The objective of the adaptive control system is to adapt
to the heart uncertainty so as to track the reference MAP
trajectory in a smooth and rapid manner. Typically, a reference
model is formulated as a linear time-invariant system [26].
However, an isolated heart is a nonlinear time-variant system,
which increases the complexity in reference MAP trajectory
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generation. To overcome this difficulty, a reference model
consisting of a virtual PID controller and the proposed EVHP
model is employed to generate a reference MAP trajectory
(see Fig. 2). The reference model is represented by the
following function:[

d xm (t)

dt
ym (t)

]T

= F (A (t), B (t), C, X, xm (t) , um (t)) .

(17)

Since describing the function F by explicit state matrices is
difficult, numerical methods are used to solve the differential
equation (17). The state variables xm(t), reference model input
um(t), and output ym(t) are chosen as

xm (t)= [xm1 (t) xm2 (t)]T , um (t)=MAP∗, ym (t)=MAP

(18)

where xm1(t) is the deviation between um(t) and ym(t), xm2(t)
is the acceleration of perfusion flow rate generated by the
virtual PID controller, and MAP∗ is the target value of MAP.

The matrices A, B, C , and X are derived by cardiac
parameters [estimated by (16)] and virtual PID control gains.
Virtual PID gains are calculated by the following procedures.

1) Construct closed-loop control of ym(t) with an arbitrary
proportional control KVP. Generate trajectory of ym(t)
via numerical method (Runge–Kutta method)

ỹm (t) = p̂a,t0→t1

=N (S (A,B,C,X), KVP, tt0→t1, xm (0) , ut0→t1).

(19)

2) Calculate the virtual PID control gains K ∗
VP, K ∗

VI and
K ∗

VD based on ỹm(t) using Ziegler–Nichols rule [27].

In (19), N (·) is the numerical solution based on
Runge-Kutta method, S(A,B,C,X) represents the reference
model system based on (17), tt0→t1 is the time series from t0
to t1, xm(0) is the initial states of the reference model system,
and ut0→t1 is the series of control input which corresponds to
um(t), t ∈ [t0, t1].

When the virtual PID gains are determined, the reference
trajectory ym(t) will be generated by a numerical method
based on the estimated cardiac parameters and the virtual PID
control gains

ym (t) = p̂a,t0→t1

= N (
S (A,B,C,X) ,

[
K ∗

VP,K ∗
VI,K

∗
VD

]
tt0→t1, xm (0) , ut0→t1

)
. (20)

C. Adaptive Controller

This section describes a control law to calculate the con-
trol command of the adaptive controller. An adaptive algo-
rithm is designed to refine the transient performance of the
controller.

1) Control Law: Let x∗(t) and u∗(t) be the ideal trajectories
of x(t) and u(t), respectively. Then⎡⎣d x∗ (t)

dt
y∗ (t)

⎤⎦ =
[

A (t) B (t)
C (t) 0

] [
x∗ (t)
u∗ (t)

]
(21)

where y∗(t) = ym(t). For the reference model, a linear map-
ping relationship between [x∗(t) u∗(t)]T and [xm(t) um(t)]T

exists [28]–[30][
x∗ (t)
u∗ (t)

]
=

[
A11 A12
A21 A22

] [
xm (t)
um (t)

]
(22)

where A11, A12, A21, and A22 are constant matrices. Thus,
a feasible adaptive control law has the following form:

u = dqp

dt
= Ke (ym (t) − y (t)) + u∗ (t)

= Keem (t) + A21xm (t) + A22um (t) (23)

where Ke is the adaptive gain for the output deviation and
em(t) = ym(t) − y(t). Explicit forms of matrices A21 and
A22 cannot be obtained because (22) is underdetermined. As a
solution, we employ an alternative controller where the matri-
ces A21 and A22 in (23) are substituted with adaptive gains
Kx and Km . When the control command exceeds the upper
or lower bound of the system input, the pump input becomes
saturated. For this, a correction term SSAT is introduced into
the control law to avoid saturation

u = [Ke Kx Km ] [em (t) xm (t) um (t)]T − SSAT

= [K1 K2 K3 K4] [em (t) xm1 (t) xm2 (t) um (t)]T − SSAT

(24)

where Ke = K1, Kx = [K2 K3], and Km = K4 are the
adaptive control gains for the reference model states and input.

The correction term SSAT is updated by PI control to
eliminate the portion of the control input that exceeds the
upper and lower limits, that is

SSAT = Ks1 [u (t)−SAT (u (t))]+Ks2

∫ t1

t0
[u (t)−SAT (u (t))] dt

(25)

where Ks1 and Ks2 are coefficients. SAT(·) represents the
saturation function

SAT (u (t)) =

⎧⎪⎨⎪⎩
umin, u (t) ≤ umin

u (t) , umin ≤ u (t) ≤ umax

umax, umax ≤ u (t)

(26)

where umin and umax are the lower and upper bounds, respec-
tively, of the control variable u(t). When u(t) is out of range,
the correction term SSAT is generated through PI control to
secure u(t) in the normal range (between umin and umax). The
integral and proportional terms are used to make the saturation
correction change smoothly [28], [32].
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2) Adaptive Algorithm: The adaptive algorithm calculates
the control gains Ku , Kx , and Ke in the control law shown
in (24) and guarantees the transient performance of the control
system. The calculation of these gains involves the information
of the plant output y(t) and the control target um(t), which
can guarantee the convergence to the control reference ym(t).
In addition, the input and output of the virtual PID controller
in the reference model are used to feedback transient errors
of reference ym(t) (delay and overshoot) caused by the virtual
PID controller. The adaptation algorithm is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

K1 = K1I

(∫ t1
t0

e2
m (t) dt

)
+ K1Pe2

m (t)

K2 = K2Pem (t) /|em (t) |
K3 = K3Pem (t) /|em (t) |
K4 = K4I

(∫ t1
t0

em (t) um (t) dt
)

+ K4Pem (t) um (t)

(27)

where K1I, K4I, K1P, K2P, K3P, and K4P are positive coef-
ficients. In order to achieve a smooth AoP regulation, both
the integral and proportional terms are used in the adaptive
algorithm [28], [31]. K1 and K2 are the gains for em(t)
and xm1(t), respectively. They are positively correlated with
em(t) to ensure that K1em(t) and K2xm1(t) are always the
negative feedback for the error between the control reference
ym(t) and the plant output y(t) and the error between the
control target um(t) and the plant output y(t), respectively.
K3 is the gain for xm2(t), determined by em(t) and xm2(t).
Thus, the corresponding term K3xm2(t) can be guaranteed a
negative feedback of em(t), and its absolute value is regulated
by xm2(t). K4 for um(t) is calculated in the same way as K3.

Based on the adaptive algorithm in (27), control law (24)
adapts to the changes in plant parameters. Thus, the control
input (aortic flow rate acceleration) generated by the control
law achieves fast and smooth AoP regulation.

D. Stability Analysis

The stability of the proposed MRAC is analyzed using
the Lyapunov function. In our system, the variables xm1(t)
is the deviation between the target MAP [denoted as um(t)]
and the model output ym(t). xm1(t) represents the control of
MAP by the virtual controller in the reference model. em(t)
is the deviation between the real MAP [denoted as y(t)] and
the model output ym(t). em(t) represents the tracking of the
reference model by the adaptive controller. Both the virtual
controller and the tracking control of the reference model
will influence the effectiveness of the MRAC. Therefore,
the Lyapunov function is established as a function of these
two variables. A quadratic function is built as the system’s
Lyapunov function, which is positive definite in the variables
xm1(t) and em(t)

V (t) = 1

2
em (t)2 + 1

2
xm1 (t)2 . (28)

Target MAP um(t) is invariant over time. The time derivative
of the Lyapunov function is then

dV (t)

dt
= em (t)

dem (t)

dt
+ xm1 (t)

dxm1 (t)

dt

= em (t)

(
dym (t)

dt
− dy (t)

dt

)
+ xm1 (t)

dym (t)

dt
. (29)

Fig. 3. (a) EVHP system for experiments. (b) EVHP diagram. P is the
pressure sensor measuring the AoP, and F is the flow probe measuring the
aortic flow.

Under physiological conditions, pa(t) and pa(t) can be
described as pa = a pa(t) where a is a positive constant,
and [(d pa(t))/dt] is proportional to (dqp/dt) [22]–[24]. The
calculation of MAP according to (9) gives

dy

dt
≈ 1

3

d pa (t)

dt
+ 2

3

d pa (t)

dt
≈

(
1

3
a + 2

3

)
d pa (t)

dt
≈ ku

(30)

where k is a positive constant. As the EVHP model mimics
the hemodynamic characteristics of the isolated heart, the fol-
lowing function analogously holds:

dym

dt
≈ kxm2 (t) . (31)

Equations (30) and (31) give

dV (t)

dt
= em (t)

(
dym (t)

dt
− dy (t)

dt

)
+ kxm1 (t) xm2 (t)

= kem (t) (xm2 − u) + kxm1 (t) xm2 (t) . (32)

According to the control law (24) and the adaptation algo-
rithm (27), if we set K3P > 1, then kem(t)(xm2−u) is negative
definite. Meanwhile, the virtual PID controller guarantees
kxm1(t)xm2(t) to be negative definite. Therefore, y = um is
globally asymptotically stable.

IV. RESULTS

Simulations and animal experiments were performed. Male
Yorkshire pig (55 ± 5 kg) hearts were used in the experiments.
All animals received humane care in accordance with the
Canadian Council on Animal Care guidelines. Institutional
Animal Care Committee of the University Health Network
approved all animal protocols.

The experimental system is shown in Fig. 3. The adaptive
controller for regulating AoP was implemented on a PLC
(FX5U, Mitsubishi, Japan), and parameter estimation was
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Fig. 4. Experimentally measured and model-calculated AoP. (a)–(f) AoP
waveforms of heart 1 to heart 6 obtained from the model and experiments,
respectively.

conducted iteratively every five minutes with a PC connected
to the PLC. The perfusate flows from the reservoir to the cen-
trifugal pump, and then to the oxygenator which exposes the
perfusate to oxygen. Oxygenated perfusate was emptied into
the coronary sinus over the aorta to maintain the myocardial
aerobic metabolism and then into the right ventricle where it
was ejected back to the reservoir through the pulmonary artery.
AoP and aortic flow rate were measured at the inflow of the
aorta with the sampling rate of 50 Hz.

A. Model Validation

Model validation was conducted by comparing the AoP
waveforms estimated from the model [see (1)–(15)] with
experimentally measured AoP waveforms. Six pig hearts were
used in EVHP experiments for model validation. AoP and
aortic flow rate were recorded during the experiments. In each
experiment, two sets of AoP and aortic flow rate data were
measured within 10 minutes with perfusion temperature kept
constant to ensure that the changes of cardiac parameters be
negligible during the measurement period. Cardiac parameters
of each heart were estimated by (16) using the first set of AoP
and aortic flow data measured in the experiment. The second
set of aortic flow data was fed into the model (Fig. 1)
with the estimated cardiac parameters to calculated the AoP
waveform. The calculated AoP was compared to the measured
AoP of the second set. Fig. 4 shows AoP waveforms obtained
from the model and experiments. In all hearts, close agreement
was found, and the errors between the model-predicted AoP
and experimentally measured AoP are less than 5% (Table III),
proving that our model is capable of accurately describing the
hemodynamic behavior of EVHP.

B. Simulation Results

1) Simulation 1 (Changing Cardiac Parameters): Simu-
lations were performed to assess the system’s control per-

TABLE III

RESULTS OF MODEL VALIDATION

TABLE IV

CARDIAC PARAMETERS

Fig. 5. Tracking response of MRAC controller. (a1) Tracking response of
heart 1. (a2) Perfusion flow of heart 1. (b1) Tracking response of heart 2.
(b2) Perfusion flow of heart 2.

formance under different cardiac parameters (Table IV).
We repeated the simulation with parameters (shown
in Table IV) that were obtained from two hearts in EVHP
experiments. A step signal of 30–60 mmHg was used as
input to test the system’s adaptability. The proposed adaptive
method was compared with a traditional PID controller in this
simulation. PID control gains for achieving the shortest settling
time without overshoot were obtained based on the cardiac
parameters of heart 1.

Figs. 5 and 6 show the pressure tracking performance by
the two control methods. To quantify the response speed
of the two methods, the settling time of the system was
measured with an error band of 2%. It can be observed that
both control methods can achieve reference pressure tracking
by regulating the pump speed; however, the adaptive control
approach [Fig. 5(a1) and (b1)] resulted in shorter settling time
than the PID controller [Fig. 6(a1) and (b1)]. The settling
time was <7.5 s by MRAC versus <9 s by PID controller
for tracking the step of 30 mmHg. In addition, compared
to the traditional PID control method with constant control
parameters, the proposed adaptive control method revealed
smaller overshoot (less than 2 mmHg) in the two simulations
[see Fig. 5(a1) and (b1)].

Since the PID control gains were tuned based on
heart 1, AoP regulation of heart 1 by PID controller also
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Fig. 6. Tracking response of PID controller. (a1) Tracking response of
heart 1. (a2) Perfusion flow of heart 1. (b1) Tracking response of heart 2.
(b2) Perfusion flow of heart 2.

Fig. 7. Tracking response with (a) small pulse input (140% of normal systolic
pressure) and (b) high pulse input (180% of normal systolic pressure).

achieved a short settling time (6.5 s) and small overshoot
(less than 2 mmHg). When the AoP of heart 2 was regulated
by the same PID control gains determined in the experiment of
heart 1, overshoot increased from less than 2–5.8 mmHg, due
to the fact that the blood vessel resistance of heart 2 was higher
than that of heart 1 (Table IV). Although the performance
of the PID controller can be improved by gain tuning for
each individual hearts, control gain tuning must be avoided
in EVHP. PID tuning is based on trial and error and brings
irreversible cardiac injury (endothelial cell injury). Therefore,
the proposed MRAC method is more adaptive across hearts
and more suitable than PID control for EVHP.

The behaviors of the aortic flow rate and acceleration are
shown in Figs. 5(a2) and (b2) and 6(a2) and (b2). There are
more fluctuations in flow rate acceleration in PID control than
in adaptive control. Aortic flow rate directly reflects the oxygen
and nutrient supply which influences the cardiac metabolism.
The large fluctuations in the flow rate and sharp changes
in the flow rate acceleration during PID control causes red
blood cell’s damage myocardial injury. Smooth waveforms
of flow rate and flow rate acceleration can prevent irregular
heartbeats and cardiac injury (see Supplementary Video). In
the proposed MRAC method, aortic flow rate acceleration is
the pump control command (24) and is generated by (27). The
control command is guaranteed smooth by using the integral

terms of em in the adaptive algorithm. In contrast, the control
gains of the PID controller are constant, making the control
system too sensitive to em , um , and xm at certain levels of em .
Thus, the smoothness of generated control command cannot
be guaranteed.

2) Simulation 2 (Irregular Heartbeat): In the proposed
EVHP model [see (12)–(15)], disturbances δ(t) is an uncon-
trollable input associated with heart contractility. Fluctuations
of δ(t) lead to irregular heartbeats which can cause distur-
bances to the AoP measurement. As AoP is the feedback,
the controller’s performance is affected by the measured AoP
and thus also by δ1. To assess the tolerance of the proposed
controller to AoP disturbance, we performed simulations using
two levels of irregular AoPs (140% of normal systolic pressure
as commonly appeared in the experiments and 180% of normal
systolic pressure as the upper limit of the irregular systolic
pressure). In the simulation, δ1 = 40% systolic pressure
and δ1 = 80% systolic pressure were fed into the model to
mimic the irregular heartbeats in EVHP, respectively. Cardiac
parameters (shown in Table IV) and aortic flow rate (as input)
of heart 1 were used in this simulation. The simulation results
shown in Fig. 7 indicate that the proposed MRAC controller is
capable of tackling AoP disturbance in the perfusion process,
while larger AoP disturbance causes a longer time for the
system to reach the steady state.

C. Experimental Performance

Experiments were performed to investigate the performance
of the proposed MRAC controller for achieving a desired
MAP. Repeated experiments were performed using six pig
hearts. The target MAP was varied in the range of 30 mmHg
to 60 mmHg which is commonly used in EVHP in steps
of 10 mmHg [1]–[3]. The first experiment was performed to
assess the system’s ability to achieve stepwise MAP setpoints.
The changing rate of cardiac parameters was less than 5%
during the AoP regulation period. Representative data from
heart 3 shown in Fig. 8(a) confirmed that the proposed adaptive
controller was capable of following the target MAP with an
average settling time of 5–8 s, with almost zero overshoot
and remaining stable over time. In the second experiment,
the target MAP was first set at 40 mmHg and then raised
to 60 mmHg. As shown in Fig. 8(b), the AoP transient
performance did not reveal any overshoot, and the steady
state was reached within 8 s. The response of the controller
to a large switching reference (30 mmHg) was also tested,
as shown in Fig. 8(c). The target MAP was changed from
30 to 60 mmHg. The control system again was able to follow
the target MAP with almost zero overshoot.

For comparison, AoP regulation by a PID controller and an
experienced operator of EVHP who followed a standard oper-
ation procedure were also conducted using six pig hearts at
steps of 10 mmHg, 20 mmHg, and 30 mmHg. Fig. 9(a) and (b)
shows the typical response in PID and manual control. They
both resulted in apparent overshoot and irregular heartbeats,
while the PID controller shows relatively faster response time.
Large AoP overshoot and longer response time in manual
control were caused due to the low manual AoP regulation
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Fig. 8. Tracking response of the adaptive controller to desired MAP at step
of (a) 10, (b) 20, and (c) 30 mmHg.

Fig. 9. (a) Representative manual control result of AoP. (b) Representative
PID control result of AoP. (c)–(e) Statistics of the tracking results.

accuracy by tuning a mechanical knob, resulting in irregular
heartbeats and even cardiac arrest. For tracking steps of 10,
20, and 30 mmHg, as shown in Fig. 9(c)–(e), the adaptive
controller had significantly faster response without causing any
irregular heartbeats (see Supplementary Video). With pressure
changes of 10, 20, and 30 mmHg, the mean settling time of the
adaptive controller was 4.2 ± 2.3, 5.5 ± 2.0, and 7.8 ± 1.7 s,
while the settling time of PID control was 6.7 ± 2.0, 7.8 ± 1.8,
and 8.9 ± 1.9 s, and the settling time of manual control was
9.3 ± 3.5, 19.1 ± 7.5, and 32.1 ± 10.6 s, respectively. At
the same MAP changing step, manual regulation time varies
widely due to the lack of knowledge in the change of cardiac
parameters and empirical knob regulation.

V. CONCLUSION

This brief reported an MRAC method for the regulation
of AoP in EVHP, which ensures the proper level of aerobic
metabolism under different cardiac parameters. A mathemat-
ical model of EVHP combined with a virtual PID controller

formed a closed-loop reference model to generate the reference
trajectory of the MAP. The adaptive algorithm adjusted the
control gain based on the reference state variable, the output
variable, and the reference MAP. Simulations were performed
to test the performance of the controller under varying heart
conditions. Simulation results showed that the MRAC can
tune control gains according to the changing cardiac para-
meters (e.g., resistance and compliance) and provide better
transient performance than the conventional PID control. The
experimental results demonstrated that the adaptive controller
was able to achieve desired AoP levels and avoid overshoot
when the MAP changed in large steps (e.g., 30-mmHg MAP
change). Although the physiological responses of the six iso-
lated hearts varied, the mean regulation error was consistently
kept less than 2 mmHg. This brief, for the first time, proved
that adaptive control can effectively regulate AoP of isolated
pig hearts in an accurate (mean error less than 2 mmHg) and
fast (4–8 s of settling time) manner. The future work is to
evaluate this adaptive controller’s effectiveness in the clinical
setting.
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