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Abstract— Objective: For heart transplantation, donor heart
status needs to be evaluated during normothermic ex situ
perfusion (ESHP). Left ventricular end-systolic elastance (Ees)
measures the left ventricular contractile function, but its estima-
tion requires the occlusion of the left atrium line in the ESHP,
which may cause unnecessary damage to the donor heart. We
present a novel method to quantify Ees based on hemodynamic
parameters obtained from only one steady-state PV loop in
ESHP. Methods: Ees was obtained by the end-systolic point
(Pes, Ves) and the volume axis intercept point of Ees (V0). V0

was estimated through the support vector machine regression
(SVR) method using parameters derived from the measured
steady-state PV loop. To achieve high V0 estimation accuracy, a
filter-based support vector machine recursive feature elimination
method (SVM-RFE) algorithm selected the parameters for V0

estimation. Hemodynamic parameter samples (n = 101) obtained
from ESHP experiments with pig’s hearts were used to train
the Ees calculation model. Early post-transplantation outcomes
in six heart transplantation experiments were then estimated
from the trained Ees calculation model. Results: Ees calculated
by the proposed method agreed well with conventional multi-beat
estimates obtained by the occlusion process (r = 0.88, p < 0.001,
n = 101) and was capable of predicting the early post-transplant
cardiac index (r = 0.84, p < 0.05, n = 6). Conclusion: This
method effectively assesses left ventricular contractility during
ESHP and predicts early post-transplant outcomes in the porcine
model. Significance: Our approach is the first to quantify Ees by
estimating V0 from steady-state beats in ESHP for accurately
predicting early post-transplantation outcomes.

Index Terms—Ex situ heart perfusion, left ventricular contrac-
tility, machine learning, heart transplantation.
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I. INTRODUCTION

HEART transplantation is the gold-standard treatment for
eligible patients with end-stage heart failure [1], [2].

Organ shortage is a challenge in heart transplantation. The
low utilization rate of donor hearts contributes to this organ
shortage. Only ∼35% of donor-brain death (DBD) hearts are
used for transplantation [3]. Most of the myocardium in such
discarded hearts is histologically normal and observed organ
dysfunction may be reversible [4]. Moreover, marginal organs
and organs from donation after circulatory death (DCD) may
be an additional source of organs for transplantation. Cold
static storage (CS) is a simple and inexpensive standard organ
preservation method. However, CS fails to provide a portal
for assessment of graft viability (e.g., myocardial function,
metabolic function, etc.) prior to transplantation, placing the
recipient at risk of transplantation failure [5]. Moreover, CS
might bring myocardial injury in the low-temperature environ-
ment [6]. A quantitative method to evaluate the donor hearts
viability prior to transplantation is required before discarded
hearts from DBD and DCD donors can be utilized clinically.
Normothermic ex situ heart perfusion (ESHP) maintains donor
hearts normal metabolism in beating state, providing the op-
portunity to assess organ viability prior to transplantation [7]–
[10]. The slope of end-systolic pressure-volume relationship
(ESPVR) is a useful measure of the left ventricular (LV)
contractile function, and Ees has been shown to be a load-
insensitive index of ventricular contractility [11]. This makes
Ees a reliable and effective parameter to evaluate donor heart
function in ESHP.

Conventionally, Ees is measured by changing the left ven-
tricular preload or afterload conditions, such as through infe-
rior vena cava occlusion (decrease blood input), and simul-
taneously acquiring multiple pressure-volume (PV) loops to
build the ESPVR [12], [13]. However, for ESHP, the traditional
measurement methods have three problems. First, decreasing
the heart blood input causes damages to the donor heart, such
as tissue hypoxia, ischemic injury, and arrhythmia [14]–[16].
Second, traditional measurement methods cannot achieve real-
time measurements and treat heart problems in time. Finally,
it is difficult to generate multiple steady-state PV loops in the
ESHP setting, because isolated hearts are usually loaded at a
relatively low volume compared to in vivo hearts for recovery.
Lower LV volume usually generates low-accuracy PV loops,
especially during the occlusion process, making the extraction
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Fig. 1. A. Representative in vivo PV loop. B. Representative ex situ PV loop.
C. In vivo normalized time-varying E(t) D. Ex situ normalized time-varying
E(t). Compared with the in vivo PV loop, there is no clear isovolumetric
contraction phase in the PV loop of the ex situ perfused heart. Left ventricular
elastance is normalized here. Compared with in vivo E(t), there is no clear
demarcation point between the isovolumetric contraction and the ejection
phase of the curve, and the two curves cannot be estimated using a bilinear
function.

of Ees through these loops difficult.
Several in vivo Ees estimation methods have been reported.

The theoretically existing peak isovolumetric pressure Pmax

was introduced to calculate Ees [17]–[20]. Attempts were also
made to estimate Ees using geometric features of time-varying
elastic curves E(t) [21], [22]. However, these Ees estimates all
depend on the stable in vivo PV loops with clear isovolumetric
contraction and ejection phases (Fig. 1A and C), which are
difficult to obtain in ESHP because isovolumetric systole and
ejection phases measured in vitro are difficult to identify (Fig.
1B and D). Therefore, existing Ees evaluation methods cannot
be directly applied to ESHP experiments. A less invasive (no
occlusion process) and more reliable Ees calculation method
is needed to replace the traditional occlusion method in ESHP.

In this work, we developed a method to calculate Ees

by predicting V0 (LV unstressed volume) in normothermic
ESHP. The problems tackled in this work include: (1) How to
calculate Ees on the deformed PV loop through a single heart
beat; (2) How to select stable and reliable key features from
the numerous hemodynamic parameters obtained in ESHP
experiments; and (3) How to construct a V0 prediction model
with high precision and good generalization ability (i.e., the
ability to predict V0 of a heart outside of the training set).

To solve these challenges, the main contributions of this
paper are as follows: (1) A V0-based Ees calculation method
for ESHP is proposed that does not require an occlusion oper-
ation and is applied for deformed PV loops. (2) An improved
support vector machine recursive feature elimination method

Fig. 2. PV loop measurement in ex situ heart perfusion system.

(SVM-RFE) [23], [24] is proposed to screen the low accuracy
and redundant features by introducing the intraclass correlation
coefficient (ICC) [25] and correlation coefficient analysis. (3)
An support vector machine regression (SVR) [26]–[28] model
is proposed to predict V0 from the selected key hemodynamic
parameters accurately. ESHP experiments are performed to
evaluate the proposed Ees calculation method. Experimental
results show that the method is able to accurately predict
V0 and Ees with the prediction accuracy of 0.99 and 0.88,
respectively. We also performed animal (pig) experiments, and
the results show that Ees calculated during ESHP was in good
correlation with the cardiac index (CI) after transplantation (r
= 0.84, p < 0.05, n = 6). To our best knowledge, this is the
only study to date that quantifies Ees by estimating V0 from
steady-state beats in ESHP, which enables accurate prediction
of early post-transplantation outcomes (CI).

II. MATERIALS AND METHODS

A. Animal Experiments

Our institutional animal care committee approved all ex-
perimental protocols, and animals were treated following the
Guide for the Care and Use of Laboratory Animals prepared
by the Institute of Laboratory Animal Resources, National
Research Council, 1996.

1) Experimental preparation:
Thirty-three male Yorkshire pigs (55±5 kg) were used in

this study, 27 of which for ex situ perfusion experiments
and 6 for transplantation experiments. Animals were pre-
medicated with an intramuscular injection of midazolam (0.3
mg/kg) and ketamine (20 mg/kg). Anesthetic maintenance
was done using a 1%–2% inspiratory fraction of isoflurane
through an oral endotracheal tube. After median sternotomy
and dissection of the cardiac structures, 30,000 units of heparin
were given intravenously. A conductance catheter (SPC-571,
Millar Inc., Houston, TX) was inserted transapically into
the left ventricle for contractility assessment using pressure-
volume loops. Following the baseline cardiac evaluation, 1.5
L of blood was collected from the inferior vena cava, and
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Fig. 3. A. Schematic diagram of the traditional Ees measurement method. B. Schematic diagram of the proposed Ees calculation method. The solid line
represents ESPVR, and its slope is Ees. The dashed line is the measured PV loop. The traditional method requires occlusion of the vena cava to obtain
multiple PV loops measured under different load conditions and then regression analysis of the coordinates of the end-systolic on each PV loop to obtain
Ees. The single-beat method requires only a single PV loop measured at steady-state and V0 calculated from the PV loop to obtain Ees.

the heart was arrested with 1,000 mL of cardioplegic solution
at 4°C. The heart was excised and placed in the ice-cold
cardioplegic solution for 1 h. The aorta, pulmonary artery,
superior vena cava, and left atrium were cannulated, and the
inferior vena cava was ligated for ESHP during this period.
The ESHP system was primed with 1.5 L of autologous blood
along with 1 g of Cefazolin, 2 g of magnesium sulfate, and
10,000 units of heparin. A hematocrit of 20% was achieved by
adding STEEN SolutionTM (EX VIVO Perfusion, Goteborg,
Sweden). The partial pressure of O2 and CO2 was maintained
between 100 and 300 mmHg and between 35 and 45 mmHg,
respectively. Dobutamine (5 mcg/min) and Insulin (5 units/h)
were infused continuously throughout the experiment (Fig. 2).

2) Ex situ perfusion experiment:

After 1 h of cold storage, the reperfusion of the heart was
started on the customized ESHP system [29]. Retrograde aortic
flow with the constant pressure of 50 mmHg was maintained
for 4 h. Left and right atrial pressures were kept at 0 mmHg.
All hearts (n = 27) were transitioned from Langendorff mode
to working mode at 1, 4, and 5 h for functional assessment.
A conductance catheter (SPC-571, Millar Inc., Houston, TX)
was inserted through the ascending aorta to the left ventricle
for the PV. Each measurement was repeated three times.

3) Transplantation experiment:

Six hearts were procured and perfused ex situ for 4 h (3 h of
Langendorff perfusion and then 1 h of bi-ventricular working
mode for functional assessment). Left ventricular function
was assessed as described in ex situ perfusion experiment in
working mode. After 4 h perfusion, the heart was flushed with
the cardioplegic solution. The recipient pigs were prepared as
described in experimental preparation. The heart-lung machine
was prepared and connected to the recipient pig after mid-
line sternotomy and pericardial dissection. The donors heart
was implanted after removing the recipient pig heart. After
weaning, the cardiac output was measured using an invasive
Swans-Ganz catheter 3 h after post-transplant reperfusion [30].

B. Ees Quantification

We propose a new method to calculate Ees by predicting
V0, which does not require multiple occlusions of the left
atrium line and minimizes damage to the heart. The single-
beat Ees calculation approach is based on the premise that
ESPVR is linear in the measured range [19], and V0 is treated
as a constant under different loading conditions if the interest
is confined to Ees [20], [31]. V0 is the ventricular volume at
zero pressure (often referred to as “unstressed volume”). Ees

is given by [22]:

Ees =
Pes

Ves −V0
, (1)

where Pes and Ves are the end-systolic pressure and volume
in the steady-state PV loop, respectively (Fig. 3B). Based on
Eq. 1, Ees could be obtained from any steady-state beat once
V0 is known. However, the traditional calculation method of
V0 can only be calculated by multiple PV loops [32]. Previous
studies show that V0 has a strong correlation with measurable
heart functional parameters in steady-state beat PV loop (e.g.,
end-systolic volume, pressure-volume area, and heart rate)
[21], [32]–[34]. SVR has been proven to be an effective tool
for solving the regression problem with a small sample size
[35]–[37]. Here, we introduce the SVR method to estimate V0

using hemodynamic parameters (features) obtained from the
steady-state PV loop. An SVM-RFE algorithm is proposed to
select the key features used in the SVR model.

The proposed Ees calculation has the following four steps
(Fig. 4).

1) Data acquisition and preprocessing:
One hundred and forty-four steady-state PV loop mea-

surement samples from 27 ESHP experiments were record-
ed. Thirty-four hemodynamic parameters (e.g., end-systolic
pressure, cardiac output, ejection fraction, etc.) were derived
from each steady-state PV loop using the IOX software
(emka TECHNOLOGIES S.A., 75015 Paris, France), serving
as a feature set for machine learning. All the 144 PV loop
measurement samples were randomly divided into two groups
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Fig. 4. Ees calculation involves four steps. Step 1 data acquisition and preprocessing: steady-state PV loop measurement samples were recorded and
hemodynamic parameters were derived from each steady-state PV loop, these samples were randomly divided into two groups by standard randomization;
Step 2 feature selection: low reliable features were screened by ICC score, and then the rest of the features were classified by correlation analysis, one
representative feature in each class is kept for the next step, at last, key features are selected using SVM-RFE from the representative features; Step3 modeling
and validation: Group A were split into a training set and a testing set randomly, a fivefold cross-validation was performed in the training process to obtain the
optimal parameters of SVR, and SVR performance was assessed in the testing set. The trained SVR model was verified in group B. Step 4: heart transplantation
experiments were performed to study the correlation between Ees and early post-transplant cardiac.

by standard randomization (“train test split” function in the
Scikit-learn library [38]). Group A contains 101 samples
(70%), which were used to build and test the SVR model,
and group B contains the remaining 43 samples (30%), which
were used to validate the model. Each measurement sample
contains at least three repeated PV loop measurements.

2) Filter-based feature selection:
V0 is estimated using the SVR method based on the features

(34 hemodynamic parameters aforementioned) obtained from
the steady-state PV loop. In order to reduce the complexity
of the algorithm and achieve high estimation accuracy, we
propose a filter-based SVM-RFE algorithm to select key
features (hemodynamic parameters) for the SVR model (Fig.
4B). All the samples in group A were used in this feature
selection process. There are three steps in this feature selection
process.

First, ICC score is introduced to screen the features with

low reliability. Compared to the in vivo measurement, ESHP
partially loads the heart, which reduces the reliability of
some parameters derived from the measured PV loop. In the
proposed algorithm, the reliability of each parameter is verified
and selected by ICC using a single-measurement, absolute-
agreement, two-way mixed-effects model (feature with an ICC
score greater than 0.75 is considered as a reliable feature [39]).
Features with high reliability are selected by

A = {c|I(c) > k1, c ∈ X}, (2)

where A is a feature subset screened by the index ICC, c is
the candidate feature, X is the candidate feature set, I(c) is the
intraclass correlation coefficient of feature c, and k1 is set to
be 0.75.

Then, features are classified through correlation coefficient
analysis [40], In each class, one representative feature is
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selected for the next step and the rest of the features are
screened according to

B = {ci|R(ci, cj) < k2, cj ∈ A, ci ∈ A, cj 6= ci}, (3)

where B is the representative feature subset, ci represents a
candidate feature, cj represents the feature in A that is differ-
ent from ci, and R(ci, cj) represents a correlation coefficient
between ci and cj ; here, k2 = 0.92.

Lastly, the key features (subset C) are selected using SVM-
RFE from the representative features (subset B). This process
traverses all the possible combinations of features in the
feature subset B using a sequential backward selection method,
and the selection criterion is

Estimation accuracy=(1−Vcalculated−Vmeasured

Vmeasured
) ∗ 100%,

(4)
where Vcalculated represents the calculated value of V0, and
Vmeasured represents V0 derived from the measured PV loop.
The key feature (subset C) with the highest prediction accuracy
is selected.

3) Modeling and validation:
Group A were split into a training set (75%) and a testing set

(25%) randomly using standard randomized “train test split”
in the Scikit-learn library (Fig. 4A). A five-fold cross-
validation was performed in the training process to obtain
the optimal parameters of SVR, and SVR performance was
assessed in the testing set. The trained SVR model based on
the features selected by the SVM-RFE and filter-based SVM-
RFE algorithm was verified in group B.

V0 and Ees obtained from the SVR model were compared
with V0 and Ees derived from the conventional method,
respectively (Fig. 3). The coefficient of determination (R2)
was introduced as the criteria to evaluate model performance.
Bland-Altman plot was also introduced to compare the pro-
posed Ees measurement with the conventional method.

4) Relationship with early transplantation outcomes (CI):
In transplantation experiments, six donor pig hearts were

perfused ex situ for 4 h and then transitioned into the working
mode for function assessment. Ees was calculated by the
proposed method. Linear regression was performed to study
the correlation between Ees and early post-transplant cardiac
index.

C. Statistical Analysis

All data are expressed as mean standard deviation (SD),
and a p-value < 0.05 is considered statistically significant. For
the variables which are normally distributed, we use Pearson
correlation; for those that do not follow normal distribution,
we use Spearman correlation. A comparison of steady-state
beat and multi-beat estimates of V0 and Ees was performed by
linear regression analysis. Statistical analysis was performed
with commercial software (SPSS 22.0; SPSS, Chicago, IL,
USA).

III. RESULTS AND DISCUSSION

We developed and validated a novel approach for Ees

calculation in ESHP. Compared with the traditional method,

TABLE I
RESULT OF FEATURE SELECTION

Indicators SVM-RFE Algorith-
m

Filter-based SVM-
RFE Algorithm

Feature subset EF, Ved, Pes/Ves,
Vmax, Vmin, PE,
PE-MEC, PVA, SW

Ved, Pes, Ves, PE-
MEC, PVA

Feature dimension 9 5
Feature reliability 0.69 ± 0.28 0.83 ± 0.06
Solution space for fea-
ture selection

234 220

V0 estimation accuracy
(test set in group A)

0.93 ± 0.06 0.95 ± 0.04

V0 estimation accuracy
(group B)

0.64 ± 0.72 0.90 ± 0.12

Paired t test (SVM-RFE
vs Filter based SVM-
RFE)

p = 0.153 (group A) p = 0.014 (group B)

EF = ejection fraction, Pes/Ves = end-systolic pressure / end-systolic volume,
Vmax = maximum volume, Vmin = minimum volume, PE = potential
energy, and SW = stroke work. The number of solution space states of the
N features is 2N. A paired t test was used to test whether the prediction
accuracy based on SVM-RFE and filter-based SVM-RFE methods in group
A (test set) and group B was significantly different.

our method calculates Ees by estimating V0 from the steady-
state beat PV loop in ESHP to avoid multiple occlusion and
reduce the injury to the heart. To establish an accurate and
reliable V0 prediction model, we propose a filter-based SVM-
RFE algorithm to screen the poor reliability and redundant
features. Features with lower feature dimensions and higher
reliability on the premise of ensuring the estimation accuracy
(Table I) are selected for the SVR model. Experimental results
(Fig. 6) show that V0 and Ees obtained by the proposed
method correlated well with the conventional method over
a wide range of cardiac contractility and loading conditions.
Transplantation experiments confirmed that Ees calculated by
our experiments correlated well with the early post-transplant
cardiac index (Fig. 7).

A. Feature Selection

SVR has been widely used for regression with a number of
features [26]–[28]. Creating an SVR model based on the most
relevant features can achieve high accuracy and reduce model
complexity. SVM-RFE has been shown to be a powerful fea-
ture selection algorithm [23], [24]. However, estimation results
may be biased when there are highly correlated features. For
example, in our work, Pmax and Pes are highly correlated (the
values of Pes and Pmax are close on a PV loop [41]), and these
redundant features can cause estimation errors. Some of the
features derived from steady-state PV loops are not reliable
(for example, the ICC score of stroke work was 0.584), which
can also reduce the accuracy of estimation results. These low-
reliability features are mainly due to the fact that the heart
is partially loaded in ESHP, and the volume measurement
is typically not stable due to the irregular shape of the left
ventricle in many hearts (the volume measurement of the left
ventricle is based on the assumption that the left ventricle is a
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Fig. 5. Representative PV loops in ex situ heart perfusion experiments. V0 and Ees calculated by the proposed method using steady-state beat PV loop data
and V0 and Ees derived from multi-beat PV loops are both displaced.

Fig. 6. A. Relationship between the calculated V0 and measured V0. B. Relationship between the calculated Ees and measured Ees. Multi-beat data were
obtained during left atrium occlusion; the single-beat calculation was made from the first steady-state beat preceding each occlusion. C. Bland-Altman analysis
of calculated V0 and measured V0 values: the difference between the measured V0 and calculated V0 values is plotted against their average. D. Bland-Altman
analysis of calculated Ees and measured Ees values: the difference between the measured Ees and calculated Ees values is plotted against their average.

cone). The proposed filter-based SVM-RFE algorithm has the
capability of screening out low liable and redundant features.

Using the proposed feature selection algorithm, eight fea-
tures with poor reliability (ICC score < 0.75) and six redun-
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dant features (r > 0.92) were excluded from the candidate
feature set X (34 features). After the screening, the state of
feature selection solution space (complexity) was reduced from
234 (34 features) to 220 (20 features). Then five key features
(end-systolic volume (Ves), end diastolic volume (Ved), end-
systolic pressure (Pes), potential energy-MEC (PE-MEC), and
pressure-volume area (PVA)) were selected by SVM-RFE
from the remaining 20 features (feature subset B).

The proposed filter-based SVM-RFE algorithm and tradi-
tional SVM-RFE algorithm were compared, and the results
are shown in Table . The number of key features selected
using the proposed algorithm and the conventional SVM-RFE
algorithm is five and nine, respectively. The features selected
by the proposed algorithm have higher reliability (ICC score
> 0.75) compared to the features selected by the SVM-RFE
algorithm (mean ICC score: 0.83–0.69). Features selected by
the proposed algorithm and conventional algorithm from group
A are put into the SVR model. The two models are trained
in the training set of group A, and the trained models are
verified in groups A and B (Fig. 4). The proposed algorithm
has better V0 estimation accuracy in both groups, while the
conventional feature selection algorithm has poor estimation
accuracy in the new data set group B (group A (test set): 0.95
± 0.04 to 0.93 ± 0.06 (p > 0.05), group B: 0.90 ± 0.12 to
0.64 ± 0.72 (p < 0.05)). The experimental results show that
the proposed method generates higher prediction accuracy and
generalization performance.

B. Validation of V0 and Ees Quantification

In our method, Ees is calculated by predicting V0 (Fig.
3B), which is suited for ESHP because the shape of the PV
loop would have little impact on the calculation. V0 is an
appropriate systolic index, and its decrease reflects the increase
of left ventricular systolic function [42]. We also found that V0

has a strong correlation with many hemodynamic parameters
extracted from a single PV loop. Therefore, we established a
machine learning model based on hemodynamic parameters
to predict V0. In this way, invasive damage caused by the
occlusion operation can be reduced as much as possible.
In our study, Ees was successfully derived from V0, which
was obtained by the SVR algorithm through hemodynamic
parameters of the steady-state PV loop.

Representative V0 and Ees obtained by the proposed ap-
proach and by the conventional multi-beat PV loops approach
are shown in Fig. 5. Fig. 6A shows the relationship between
V0 calculated by the proposed approach and V0 measured by
the conventional approach (r = 0.99, p < 0.001, n = 101). Fig.
6B shows the relationship of Ees calculated by the proposed
approach and Ees measured by the conventional approach (r
= 0.88, p < 0.001, n = 101). The data indicate a strong
correlation between calculated V0 and Ees and V0 and Ees

obtained by the conventional multi-beat approach. We also
performed Bland-Altman analysis. As shown in Fig. 6C and
D, the average deviation between the calculated value and the
measured value is low (V0: 0.09 mL; Ees: −0.07 mmHg/mL).
The correlation analysis and Bland-Altman plot show that the
proposed method is an acceptable way to measure Ees.

Fig. 7. Relationship between calculated Ees by our method and early (3 h)
post-transplant cardiac index.

C. Transplantation Results

Ees is one of the key cardiac parameters, represents the
left ventricular contractility [10], [12], [13]. Transplantation
experiments were performed to investigate the relationship
between the quantified Ees values and early post-transplant
outcome (CI). The donors heart was implanted after removing
the recipient pig heart. After weaning, the cardiac output
was measured using an invasive Swans-Ganz catheter 3 h
after post-transplant reperfusion. As shown in Fig. 7, Ees

obtained using the proposed approach in ESHP prior to the
transplantation shows a good correlation with early post-
transplant cardiac index (r = 0.84, p < 0.05, n = 6). The
two data with CI of 0 in Fig. 7 indicates the failure of the
heartbeat. The results of the transplantation experiments show
that the proposed method is a useful tool to evaluate organ
viability during ESHP, which mitigates transplantation risks
and effectively utilizes marginal donor hearts.

IV. CONCLUSION

In this study, we developed and validated a novel Ees

calculation approach based on machine learning technology
for ESHP. Experimental results confirmed that the single-beat
Ees calculation method correlated well with the conventional
method over a wide range of cardiac contractility and loading
conditions. Transplantation experimental results show that the
Ees calculated using our method correlated well with the
early post-transplant cardiac index. The proposed approach
should be a useful tool to quantitatively assess left ventricular
contractility during ex situ heart perfusion and estimate early
post-transplant outcomes. To the best of our knowledge, the
approach here described is the only study to date to calculate
Ees by estimating V0 from steady-state beats in ESHP and use
it to predict early post-transplantation outcomes (CI).
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