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Abstract—This paper proposes a new eye-in-hand 3D
scanner-robot calibration approach to realize low data
stitching errors during long-term continuous measurement.
Eye-in-hand 3D scanner-robot systems are commonly used
for complete measurement of an object under test (OUT)
from multiple fields of view (FOVs). To align the multiple
FOVs into a single coordinate system, marker-free stitching
assisted by robot’s positioning is attractive since it by-
passes the cumbersome traditional fiducial marker-based
method. Based on periodically capturing calibration images
from a 2D calibration target, scanner’s and robot kine-
matic model’s parameters are optimized. The challenges
overcome in this work include, (1) how to compensate for
the center-detection error in scanner calibration; (2) how
to avoid the dependency of hand-eye calibration on DH
parameters; and (3) how to calculate an accurate world-
to-robot transformation. These challenges were tackled by
several new techniques including accurate scanner calibra-
tion with iterative refinement of control points, virtual arm-
based scanner-robot kinematic modeling, and trajectory-
based world-to-robot transformation calculation. Experi-
mental results demonstrated a low initial stitching error
similar to the fiducial marker-based method (0.0446 mm vs.
0.0542 mm) was achieved. The mean stitching error was
effectively maintained to be <0.1 mm during the continuous
measurement with an average intermittent downtime of 78
seconds for recalibration.

Index Terms—Robot sensing systems, manufacturing
automation, industrial metrology, structured light measure-
ment, kinematic model, data stitching.

The authors acknowledge financial support from the Natural Sciences
and Engineering Research Council of Canada, the Canada Research
Chairs program, and the Ontario Research Fund - Research Excellence
program. They also acknowledge technical support by Mr. Cheng Zeng
and Dr. Yu Lin from Kirchhoff Automobile North America Inc. (X. Liu
and H. Madhusudanan contributed equally to this work.) (Corresponding
author: Yu Sun.)

X. Liu, H. Madhusudanan, Dahai Li, and J. Ge are with the Depart-
ment of Mechanical and Industrial Engineering, University of Toronto,
Toronto, ON M5S 3G8, Canada, and also with the Robotics Insti-
tute, University of Toronto, Toronto, ON M5S 3G8, Canada. (e-mail:
xj.liu@utoronto.ca; harikrishnan.madhusudanan@mail.utoronto.ca; da-
hai.li@utoronto.ca; geji1981@gmail.com).

W. Chen is with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON M5S 3G8, Canada, and also
with the Robotics Institute, University of Toronto, Toronto, ON M5S 3G8,
Canada. (e-mail: chenwy.chen@mail.utoronto.ca).

C. Ru is with the Research Center of Robotics and Micro System,
Soochow University, Suzhou 215021, China, and also with the Jiangsu
Provincial Key Laboratory of Advanced Robotics, Soochow University,
Suzhou 215021, China. (e-mail: rzh@suda.edu.cn).

Y. Sun is with the Department of Mechanical and Industrial En-
gineering, University of Toronto, Toronto, ON M5S 3G8, Canada,
and also with the Robotics Institute, the Department of Electrical
and Computer Engineering, and the Department of Computer Sci-
ence, University of Toronto, Toronto, ON M5S 3G8, Canada. (e-mail:
sun@mie.utoronto.ca).

world to scanner

transformation

structured light 3D scanner

pose 1 data pose 2 data

OUT

(a) (b)

(c)

pose 1

pose 2

scanner to end-effector

transformation

3D data stitching error

end-effector to robot base transformation

fiducial markers

robot arm

overlapping marker 

points

transformation

FOV

(d)

Fig. 1. (a) Structured light 3D scanning of an object. The relative trans-
formation between multiple poses is obtained by using fiducial markers
(b) or robot kinematics (DH parameters) and hand-eye transformation
(c). (d) Data captured at multiple poses are stitched together.

I. INTRODUCTION

OPTICAL measurement of three-dimensional (3D) surface
geometry has gained wide applications in industrial

inspection [1], visual servoing [2], and vision-guided au-
tomation [3]. Among these 3D optical measurement methods,
structured light-based scanning has the advantages of high-
accuracy, non-contact, and full-field characteristics [4]. In most
applications, the object under test (OUT) is larger than a single
field-of-view (FOV) of the 3D scanner (see Fig. 1(a)). For
complete measurement, the 3D scanner is usually mounted
on a robotic arm (eye-in-hand) to acquire point clouds from
multiple FOVs of the object (see Fig. 1(b)(c)). To achieve high
quality of 3D point clouds, a data stitching process is required
to align the multiple FOVs into a single coordinate system.

Fiducial marker-based [5], [6] and robot kinematics-based
methods [7], [8] are the two mainstream approaches for data
stitching. In fiducial marker-based method (Fig. 1(b)), placing
markers on every industrial part and removing them is cumber-
some. Furthermore, not all object surfaces are suitable or al-
lowed for attaching markers. In contrast, the robot kinematics-
based method does not require marker placement. It transfers
point clouds of multiple FOVs from the scanner’s coordinate
frame to a common robot base frame to achieve data stitching.
The accuracy of the merged point clouds depends on accurate
calibration of scanner’s parameters (world to scanner), hand-
eye parameters (scanner to end-effector), and robot’s Denavit-
Hartenberg (DH) parameters [9] (end-effector to robot base)
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(Fig. 1(c)). However, the aforementioned parameters deteri-
orate over time due to factors such as wear, gear backlash
and temperature changes [10], [11], leading to high 3D data
stitching errors (>0.2 mm) [12]. Long-term routine industrial
operation demands automated, accurate, and fast calibration of
scanner, hand-eye, and DH parameters to maintain low data
stitching errors.

Scanner calibration is necessary for extracting 3D geometric
information from captured 2D images (world to scanner).
Among existing methods, 2D target-based calibration meth-
ods [13]–[16] gained widespread adoption because of its
high flexibility. It gives a closed-form solution from a set
of matches between known target points and their 2D image
points, where squares [13], chessboard [14] and circles [15],
[16] are commonly used 2D features. Since square/chessboard
detection is more sensitive to illumination conditions, circle-
based targets are often used for high-accuracy calibration [15],
[16]. Existing circle-based techniques directly detect the circle
centers on the captured images as the calibration algorithm’s
inputs; however, these images suffer from inherent optics-
caused nonlinear distortions [17], causing detection errors in
scanner calibration.

For hand-eye (scanner to end-effector) calibration and
the calibration of robot’s DH parameters (end-effector to
robot base), there exist several techniques. Hand-eye cali-
bration is performed by solving an equation of the form
AX = XB [18], [19]. X is the unknown hand-eye trans-
formation to determine. A is the relative transformation of
scanner frame between different poses. B is the relative
transformation of end-effector frame between different poses,
which is a function of DH parameters. However, the accuracy
of DH parameters deteriorates over time as discussed above,
causing inaccuracies in hand-eye calibration and further high
3D data stitching errors. Although there are methods for
calibrating DH parameters separately using optical [20], [21]
and laser tracking systems [22], [23] by tracking a specialized
target attached to the robot’s end-effector, the long downtime
(e.g., 10-15 minutes for mounting and removing specialized
target [21], [22]) poses limitations for their application in
long-term routine industrial use. To prevent the inaccuracies
in hand-eye calibration due to errors in DH parameters, the
dependency of hand-eye transformation on DH parameters
should be avoided such that they can be calibrated and
optimized simultaneously.

For long-term operation, kinematic parameters should be
optimized regularly to reduce errors overtime. To construct
the cost function for optimization, accurate transformation Z
from the calibration target (world) to the robot base frame
needs to be known as the ground truth reference [24]. Al-
though methods exist for robot-world calibration by solving
the equation of the form AX = ZB [25], [26], where Z is the
unknown world-to-robot transformation, errors present in the
DH parameters are not considered. These errors bias the cal-
culation of Z and the subsequent optimization of the scanner-
robot kinematic model. Thus, automated, accurate, and fast
calibration of scanner-robot parameters remains unsolved.

A new calibration technique to reduce large 3D data stitch-
ing errors and long calibration-caused system downtime is
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Fig. 2. (a) System setup: a structured light scanner mounted on a robot
arm. (b) Overall operation sequence of the initial system setup, initial
calibration, OUT scan and subsequent recalibration when needed.

proposed in this paper. For periodic recalibration in order to
maintain a low data stitching error, the robot moves towards a
2D standard calibration target and optimizes the entire system
parameters with significantly reduced downtime, after which
3D scanning resumes. The problems tackled in this work
include: (1) how to compensate for the center-detection error in
scanner calibration; (2) how to avoid the dependency of hand-
eye calibration on DH parameters such that robot and hand-
eye parameters can be calibrated at the same time; (3) how
to calculate the accurate world-to-robot transformation Z (for
constructing cost function in optimization) without involving
imperfect DH parameters.

The proposed calibration technique solves these challenges
by integrating several novel key techniques including accurate
scanner calibration with iterative refinement of circle centers
(Section III), scanner-robot kinematic model modification via
a virtual-arm technique (Section IV), and trajectory-based
world-to-robot transformation calculation (Section V). Exper-
imental results demonstrate that the 3D scanner-robot system
is capable of achieving a low initial stitching error similar
to the fiducial marker-based method (0.0446 mm vs. 0.0542
mm) was achieved. The mean stitching error was effectively
maintained to be <0.1 mm during the continuous measurement
with an average downtime of 78 seconds for recalibration.

II. SYSTEM OVERVIEW

A. System Setup

The system used in this work (Fig. 2(a)) consists of a
custom-built standard 3D structured light scanner and a 6-
axis robot arm (UR5). The scanner consists of standard
components, including two cameras (Basler acA2440-20gm,
resolution: 2448×2048 pixels) and a projector (Texas Instru-
ments ANSI lumens RGB LED). The cameras and projector
are synchronized by an external triggering circuit at a frame
rate of 20 Hz. With the selected hardware, the 3D scanner has
an FOV of 300 mm×400 mm at the working distance of 700
mm. A standard certified 2D calibration target with an array
of circles was used. An automotive part larger than the FOV
of the scanner was used as OUT.
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B. Operation Sequence
As shown in Fig. 2(b), during the initial setup, the scanner

parameters are calibrated first. Next, the kinematic model of
the scanner-robot system is modified to remove the depen-
dency of hand-eye transformation on DH parameters. The
calibration target-to-robot base frame transformation Z (world-
to-robot) is obtained as the ground-truth for optimizing system
kinematic parameters. With the modified kinematic model and
the ground truth world-to-robot transformation, a cost function
is defined. The subsequent optimization step minimizes this
cost function using the 2D calibration target. Since the initial
calibration parameter errors can be large, initial optimiza-
tion takes longer than subsequent optimizations. After the
optimization step, the robot turns towards the OUT and the
scanner performs scanning on the OUT. In subsequent recal-
ibrations, the resultant parameters obtained from the previous
optimization step are used as estimated values to speed up the
optimization process. Calibration of scanner and the kinematic
parameters are repeated when required to maintain a low data
stitching error.

III. SCANNER CALIBRATION

Scanner calibration involves calibrating the scanner’s intrin-
sic (Λl,Λr for intrinsic matrices, dl, dr for distortion coeffi-
cients) and extrinsic parameters (Γs for translation from left to
right camera and Γl from world to left camera) [15], [16]. In
this work, a 2D calibration target is used with N feature points
printed on it. The scanner is moved in M different positions
and orientations with the 2D calibration target in its FOV. Via
center detection [27], 2D centers xmnl ∈ R2 and xmnr ∈ R2 are
detected on the left and right image planes, where m denotes
the mth pose of the calibration target and n denotes the nth

feature point on the target. Since the design of the calibration
target is known, the 3D world coordinates of nth feature point
can be obtained and denoted as Xn

w ∈ R3. With these as
input, the unknowns are firstly calculated by a closed-form
solution [13], and then a globally optimal estimation (bundle
adjustment [15]) is used to adjust the parameters to minimize
the following cost function.

ξ = {ξ̂l, ξ̂r, X̂1:N
w } = arg min

ξl,ξr,X1:N
w

(cst(ξl, ξr, X
1:N
w )) (1)

where ξl = (Λl, dl,Γ
1:M
l ) and ξr = (Λr, dr,Γ

1:M
r ) are left

and right camera parameters and the cost function cst is

cst(ξ) =
M∑
m=1

N∑
n=1

(
1

2
χmnl +

1

2
χmnr )

χmnl = ‖xmnl − x̂mnl ‖
2

χmnr = ‖xmnr − x̂mnr ‖
2

x̂mnl = Ψl(Λl, dl,Γ
m
l , X

n
w)

x̂mnr = Ψr(Λr, dr,Γs,Γ
m
r , X

n
w)

(2)

in (2), x̂mnl ∈ R2 and x̂mnr ∈ R2 are called predicted
image points which are a group of 2D image projections
of Xn

w ∈ R3 with existing system parameters (by closed-
form solution or previous optimization). Ψl/Ψr : R3 → R2

represent the function projecting 3D world coordinates to the
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2D image plane with system parameters. By combining (1)
and (2), the optimal estimation boils down to minimizing
the reprojection errors (χmnl and χmnr ) between the control
points (xmnl , xmnr ) and predicted image points (x̂mnl , x̂mnr ).
The reprojection error quantifies how closely an estimate of
system parameters recreates the point’s true projection [28].

A limitation of the traditional calibration method [15], [16]
is that the detected control points xmnl and xmnr are regarded
as ground truth and kept fixed during optimization. However,
for a circular control point, it often becomes a distorted ellipse
in the image plane because of perspective projection and lens
distortion [17], causing the real center to deviate from the
detected center, as illustrated in Fig. 3(a). The detection error
of xmnl and xmnr can lead to inaccurate scanner calibration.
The error in scanner calibration also propagates to subsequent
hand-eye and robot kinematics model calibration, resulting in
poor accuracy in 3D data stitching.

To overcome this limitation, we propose an iterative refine-
ment approach to compensate for the detection error. Instead of
using the detected control points from distorted 2D images, the
3D circles (edge points) on the calibration target are projected
and undistorted to the image plane by the initial calibrated
system parameters. The obtained 2D contours of these 3D
circles are used to fit the 2D centers of control points with
higher accuracy because they are undistorted by the initial cal-
ibration parameters. Once the control points are localized, they
are then used to recompute the camera calibration parameters.
This process is repeated until convergence.

In the first iteration, traditional calibration algorithm is
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conducted to calculate the initial estimate of system parameters
ξinit. In the subsequent iterations, the edge points of 3D circles
(Xe(xe, ye, ze)) are calculated first. With the known 3D world
coordinates of centers Xn

w = (xc, yc, zc) and circle’s radius rc,
the edge point Xe is{

(xe − xc)2 + (ye − yc)2 + (ze − zc)2 = r2c

a(xe − xc) + b(ye − yc) + c(ze − zc) = 0
(3)

With obtained Xe = (xe, ye, ze) in 3D world coordinates
and initial system parameters ξinit, these edge points are
projected and undistorted to the left and right image plane,
respectively. A group of virtual ellipses are then obtained in the
image plane, (ue, ve)l = Ψl(Λl, dl,Γ

m
l , Xe) and (ue, ve)r =

Ψr(Λr, dr,Γs,Γ
m
r , Xe), as shown in Fig. 3(b). These virtual

ellipses are used to fit the updated control points ẋmnl and
ẋmnr , {

ẋmnl = EllipseF itting(ue, ve)l

ẋmnr = EllipseF itting(ue, ve)r
(4)

Substituting these updated control points into (2) gives
cst(ξ) =

M∑
m=1

N∑
n=1

(
1

2
χmnl +

1

2
χmnr )

χmnl = ‖ẋmnl −Ψl(Λl, dl,Γ
m
l , X

n
w)‖2

χmnr = ‖ẋmnl −Ψr(Λr, dr,Γs,Γ
m
r , X

n
w)‖2

(5)

This process is iterated according to (3)-(5) until the distance
between updated control points ẋmnl and ẋmnl and previous
control points xmnl and xmnl is smaller than a predefined
threshold (e.g., 0.1 pixel) (see Fig. 3(c)).

IV. VIRTUAL ARM-BASED KINEMATIC MODEL

After accurate scanner calibration, the transformation from
the scanner frame to robot base frame must be determined
so that point clouds from multiple FOVs can be transferred
into a single coordinate frame. Traditionally, robot parameters
are calibrated using optical/laser tracking systems [20]–[22]
and the hand-eye transformation X is calibrated separately
by solving an equation of the form AX = XB [18], [19],
where X is the unknown hand-eye transformation; A is the
relative transformation of scanner frame between different
poses; and B is the relative transformation of end-effector
between different poses which is a function of DH parameters.
Using this hand-eye transformation X and the DH parameters,
the scanner frame’s position and orientation with respect to the
robot base frame can be represented as

i
i−1DH = Tranzi−1

(di)Rotzi−1
(θi)Tranxi

(ai)Rotxi
(αi)

X =

[
RX TX
0T 1

]
Trobot

scanner = 1
0DH 2

1DH . . . 54DH 6
5DHX

(6)
where i

i−1DH, i = 1, . . . , 6 denotes the homogeneous trans-
formation from joint i frame to joint i−1 frame (see Fig. 4(a)).
The DH parameters (ai, di, αi, θi) represent the link length,
link offset, link twist and joint angle of the ith link, respec-
tively. However, the DH parameters undergo changes overtime
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Fig. 4. (a) Determination of the transformation from scanner to robot
base frame using hand-eye transformation and DH parameters. (b) Con-
struction of intermediate frame and virtual arm links. (c) Construction of
intermediate frame when z-axis) of scanner frame is parallel to that of
joint 5 frame. (d) Construction of intermediate frame when z-axis) of
scanner frame intersects with that of joint 5 frame. (e) Construction of
intermediate frame when z-axis) of scanner frame is skew with that of
joint 5 frame.

due to non-geometric factors such as wear and temperature
changes, causing inaccuracies in X. This requires periodic
calibration of robot DH parameters by using optical/laser
tracking systems, followed by hand-eye calibration since the
accuracy of X is dependent on DH parameters [20], [22], [23].
The long downtime (10-15 minutes [22]) of this procedure is
undesired for long-term routine industrial operation.

To avoid the dependency of hand-eye transformation on
DH parameters, our technique modifies the existing kinematic
model such that both robot and hand-eye parameters can
be calibrated at the same time. This is accomplished by
constructing a new set of DH parameters for transformation
from scanner frame to joint 5 frame of the robot. However,
the new parameters cannot be constructed directly because
using DH representation, only translation and rotation about
two axes (x and z) can be represented [9].

To overcome this limitation, an intermediate joint frame
is inserted in between scanner frame and joint 5 frame with
two new virtual arm links, as shown in Fig. 4(b). Hence, the
transformation from the scanner frame to robot base frame can
be represented using purely DH parameters as

Trobot
scanner = [10DH . . . 5

4DH][
6
5DH′

7
6DH′]

i
i−1DH = Tranzi−1

(di)Rotzi−1
(θi)Tranxi

(ai)Rotxi
(αi)

k
k−1DH′ = Tranzk−1

(d′i)Rotzk−1
(θ′k)Tranxk

(a′k)Rotxk
(α′k)

(7)
where i

i−1DH, i = 1, . . . , 5 is the same in (6), and
k

k−1DH′, k = 6, 7 are are the transformations from the scanner
frame to the intermediate frame and from the intermediate
frame to joint 5 frame, respectively. (a′k, d

′
k, α
′
k, θ
′
k) are the

newly constructed DH parameters of the 6th and 7th links.
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The location of the intermediate frame depends on the orien-
tation of scanner frame with respect to joint 5 frame. The ini-
tial position and orientation of the scanner frame with respect
to joint 5 frame (65DHX) is determined with the traditional
hand-eye calibration approach. Although this transformation
may not be accurate at this moment due to the presence of
initial errors in DH parameters, the inaccuracies are eliminated
in the next step through optimization (Section V). Based on
the type of scanner and robot used, the z-axis of the scanner
frame and joint 5 frame can either be parallel, intersecting,
or skew (neither parallel nor intersecting), respectively. In the
following steps to construct DH parameters, joint 5 frame is
considered as the frame of reference.

1) Parallel (Fig. 4(c)). The center point of the intermediate
frame (P0) is selected anywhere along the z-axis of the
scanner frame. Let P1 be any point along the z-axis of
the joint 5 frame. From P0, the x-axis of the intermediate
frame is constructed along the shortest distance line to the
z-axis of joint 5 frame. The distance of this line is

Dparallel =
|P0 × (P0 − P1)|

|P1|
(8)

The z-axis of the intermediate frame is along the direction
of z-axis of the scanner frame.

2) Intersecting (Fig. 4(d)). The center point of the interme-
diate frame is chosen to be at the point of intersection,
and x-axis is perpendicular to the plane formed by the
two intersecting z-axis. The z-axis of the intermediate
frame is along the z-axis of the scanner frame.

3) Skew (Fig. 4(e)). The center point is chosen at a point on
the z-axis of the scanner frame where a line perpendicular
to the z-axis of both joint 5 frame and scanner frame
meets, and x-axis is along this shortest distance line. The
distance of this line is

Dskew =
|P3 · (P2 × (P4 − P3))|
|P2 × (P4 − P3)|

(9)

In (9), P2 is any point on the z-axis of joint 5 frame;
P3, P4 are any two points on the z-axis of the scanner
frame.

The x-axis of the intermediate frame is along this calculated
shortest distance line. Dskew (or Dparallel in the case of
parallel z-axis) represents the link length (a′6) DH parameter
of the intermediate joint frame. Note that, in the case of inter-
secting z-axis, a′6 = 0. Based on the position and orientation
of the intermediate frame with respect to joint 5 frame and
the scanner frame with respect to the intermediate frame,
the remaining DH parameters for the intermediate frame and
the scanner frame are constructed according to traditional
methods [9] with the original DH parameters replaced for joint
6, and joint 7 added to the kinematic chain. The process of
obtaining the modified kinematic model involves capturing few
poses, which costs 5-7 seconds, and is performed only once
during initial system setup.

V. TRAJECTORY-BASED WORLD-TO-ROBOT
TRANSFORMATION CALCULATION

The modified kinematic parameters are optimized for error
reduction. To perform optimization, an accurate calibration
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Fig. 5. (a) Determining the position of robot base frame with respect
to calibration target frame using circular trajectory. (b) Determining the
orientation of robot base frame with respect to calibration target frame
using linear trajectory.

target to robot base (world-to-robot) transformation Zrobot
world

is calculated to construct the cost function. Existing meth-
ods [25], [26], which find this world-to-robot transformation
by solving an equation of the form AX = ZB, cannot be used
in this case because errors in DH parameters are propagated
to the world-to-robot transformation Zrobot

world. In contrast, our
proposed technique is based only on the trajectory points
formed by the scanner frame with respect to the calibration
target (world) frame, without any DH parameters involved.

To find the robot base frame position with respect to the
calibration target frame, only the base joint (J1) of the robot
(see in Fig. 5(a)) is moved for any n(> 3) different angles
to keep all other joint angles (J2-J6) fixed such that the
calibration target is always entirely within the FOV of the
scanner. Since the kinematic model of the system has been
modified as discussed in Section IV, the original point of
scanner frame is regarded as the virtual end-effector. For these
n different poses of the robot, n trajectory points of the virtual
end-effector are recorded by calculating the transformation
from calibration target frame to scanner frame using the PnP
algorithm [29]. This forms a circular trajectory of n points
in 3D space. A common center Pc(a, b, c) satisfying all these
points is

Pc = arg min
(a,b,c)

n−1∑
i=0

n∑
j=i

(γ(xi, yi, zi)
2 − γ(xj , yj , zj)

2)

γ(x, y, z) =
√

(a− x)2 + (b− y)2 + (c− z)2
(10)
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where (xi, yi, zi) are the coordinates of the ith trajectory point,
γ(xi, yi, zi) is the radius of circular trajectory of the ith point.
The sum of difference between the squared radius of two
adjacent trajectory points (γ(xi, yi, zi) and γ(xj , yj , zj)) is
minimized to find the center of the best fit circle Pc(a, b, c).
Once the best fit circle Pc is obtained, it is projected to the x-y
plane of the calibration target frame by setting c to 0. Hence,
(a, b, 0) is the required robot base frame position with respect
to the calibration target frame. The z-axis of robot base frame
is parallel with that of calibration target frame.

The z-axis of the UR5 robot base frame is perpendicular to
the base plane of the robot, and when base joint angle (J1)
is at 0 degree, J2 rotates along the y-axis of the robot base
frame. Thus, to determine the x-axis of robot base frame as
shown in Fig. 5(b), J1 angle is fixed at 0 degree and only
J2 is rotated for n different angles. All other joint angles are
fixed such that the calibration target frame is entirely within
the scanner’s FOV. For each point, the position of the virtual
end-effector is determined with respect to the calibration target
frame by the PnP algorithm [29].

These points are projected down to the x-y plane of calibra-
tion target frame by setting their z component to zero. Fitting
a best line to these trajectory points is conducted to determine
the y-axis direction of the robot base frame. (xmid, ymid) is
defined as the mean center point on the best fit line containing
all the points. (xi, yi) is the coordinates of the ith trajectory
point. The best fit line is

y = kx+m

k =

∑n
i=1((xi − xmid)(yi − ymid))∑n

i=1(xi − xmid)2

m = ymid − kxmid

(11)

The unit vector along the direction of this line y = kx + m
towards the calibration target is determined and translated
to the robot base frame position. In this way, the x-axis
of robot base frame is determined (see Fig. 5(b)). Together
with the known z-axis, y-axis is found using the right-hand
rule. Based on this position and orientation, the homogenous
transformation Zrobot

world from the robot base to the calibration
target frame is obtained. In this technique, the errors from
the DH parameters are avoided by moving only one joint
at a time. The only other source of error in tracking the
trajectory points can be from incorrect scanner calibration.
Thus, the scanner parameters are accurately calibrated using
the scanner calibration technique as described in Section
III. However, irrespective of scanner calibration the obtained
Zrobot

world transformation remains the same as the errors in the
circular and linear trajectory are compensated by fitting a best
circle and line, respectively.

Using the modified kinematic model and the obtained
world-robot transformation Zrobot

world as the ground truth, a
cost function is constructed, and the model parameters are
optimized using iterative nonlinear optimization. n differ-
ent views of the calibration target are captured with dif-
ferent robot poses. For the ith pose of the robot, let
iHworld

scanner be the transformation obtained from the cali-
bration target frame to the scanner frame using the PnP

method, iTscanner
robot (a1−7, d1−7, α1−7, θ1−7) be the transfor-

mation from the scanner frame to the robot base frame
which is a function of modified kinematic parameters to be
optimized including link length a1−7, link offset d1−7, link
twist α1−7 and joint angle θ1−7. For the ith pose, the estimated
transformation iCworld

robot from the calibration target (world) to
robot base is
iCworld

robot(a1−7, d1−7, α1−7, θ1−7) =i Tscanner
robot

iHworld
scanner.

(12)
Let RiC and tiC be the rotational and translation compo-
nents of iC

robot
world. RZ, and tZ be the rotational and trans-

lational components of Zrobot
world. For n different poses, the

position error (PE(a1−7, d1−7, α1−7, θ1−7)) and orientation
error (OE(a1−7, d1−7, α1−7, θ1−7)) are
PE =

n∑
i=1

||[tz − tiC] [tz − tiC]′||

OE =
n∑
i=1

||[Rodrigues(RiC R′z)] [Rodrigues(RiC R′z)]′||

(13)
where rv = Rodrigues(R) is the Rodrigues’ rotation formula
which transfers rotation matrix R ∈ R3×3 to a rotation vector
rv ∈ R1×3. Then the objective function is

E = arg min
a1−7,d1−7,α1−7,θ1−7

(PE +OE) (14)

Minimization is performed with respect to
(∂a1−7, ∂d1−7, ∂α1−7, ∂θ1−7), which corresponds to
deviations of link length, link offset, link twist and joint
angle of links 1 to 7 (the virtual arm-based kinematic model
in Section IV), respectively. Optimization is subject to
|∂a1−7| ≤ ea, |∂d1−7| ≤ ed, |∂α1−7| ≤ eα, |∂θ1−7| ≤ eθ,
where (ea, ed, eα, eθ) are the constraints, and their values are
set based on maximum expected deviation in the modified
kinematic parameters. This is a non-linear optimization model
with bounded constraints, which is commonly solved by
sequential quadratic programming [30], [31].

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Performance of Scanner Calibration
To evaluate the performance of our scanner calibration tech-

nique, a standard certified 2D calibration target was used. The
target consists of 99 circles with a diameter of 5±0.001mm for
the small circles and 10±0.001 mm for the large circles. The
distance between two adjacent circles is 20± 0.001 mm. The
mean measurement error of the distance between the adjacent
circles, εc, was used as the metric for scanner calibration
evaluation.

εc =

∑
i=1:N |

√
(pi − pi+1)2 − 20.0|

N
(15)

where pi is 3D coordinate of the reconstructed circle centers
with calibrated parameters.

The proposed iterative refinement with center detection error
compensation for scanner calibration was compared with the
traditional scanner calibration approach [15]. Since temper-
ature change is a main factor causing scanner measurement
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(a) (b) (c)

Fig. 6. (a) Scanner calibration. Mean measurement error by our proposed method based on iterative refinement of circular feature points, the
traditional closed-form approach with bundle adjustment, and without scanner recalibration. Comparison of translational error (b) and rotational
error (c) between traditional world-to-robot calibration and our proposed trajectory-based world-to-robot calibration.

errors [32], we manually increased the surrounding tempera-
ture of the scanner from 20◦C to 45◦C with a heater. For each
measurement, 20 different images were captured from different
poses and both the proposed and traditional calibration were
conducted to obtain the scanner parameters and reconstruct
3D coordinates of the calibration target. The experimental
results are shown in Fig. 6 (a). It can be seen that, without
regular calibration (i.e., only with initial calibration using the
traditional method), the mean measurement error was 0.015
mm. As the scanner temperature was gradually increased from
20◦C to 45◦C, the mean measurement error increased from
0.015 mm to 0.025 mm. When recalibration was performed
regularly using the traditional method, a consistent mean mea-
surement error of 0.016 mm was maintained. In comparison,
calibration using our proposed technique outperformed the
traditional method, which achieved a mean measurement error
of 0.01 mm throughout the process due to its capability of
compensating for circle detection errors.

B. Performance of Zrobot
world Transformation Calculation

The world-to-robot transformation Zrobot
world obtained by our

proposed method was compared with that by the traditional
method by solving AnX = Zrobot

worldBn. An is the set of
relative transformations between scanner frame obtained from
n different poses [A1, . . . ,An]. [B1, . . . ,Bn] is the set of
relative transformations between end-effector frames obtained
from n different poses as a function of DH parameters. X is
the scanner-to-end effector transformation. The main drawback
of the traditional method is that the errors present in DH
parameters bias the calculation of Zrobot

world.
For each measurement of world-to-robot transformation

Zrobot
world, n = 10 different poses were taken. Artificial errors

were added (up to 1% with an interval of 0.1%) to all the 24
DH parameters (six links) of the robot. The transformation ob-
tained using the traditional method initially when no error was
added to the DH parameters was considered to be the nominal
value Zrobot

world(nominal). The rotational and translational error
metrics, defined in [33], are{

Err(RmeasuredZ ) =
∥∥RnominalZ −RmeasuredZ

∥∥
Err(tmeasuredZ ) =

∥∥tnominalZ − tmeasuredZ

∥∥ (16)

where RmeasuredZ and tmeasuredZ are the rotational and trans-
lational components of world-to-robot transformation ob-
tained using our proposed method and the traditional method
(AX = ZB). The rotational and translational errors between
the nominal world-to-robot transformation and calculated
world-to-robot transformation for both methods were com-
pared, as summarized in Fig. 6(b)(c). As the errors in DH
parameters increased, the rotational and translational errors
of world-to-robot transformation increased gradually for the
traditional method. In contrast, our proposed trajectory-based
world-to-robot calculation method achieved consistently low
errors irrespective of increase in errors of DH parameters. The
results demonstrate that our proposed method is independent
of errors in DH parameters.

C. Evaluation of Virtual Arm-Based Kinematic Model

100.2073 mm

Ø
 3

8
.1

0
4

3
 m

m

(a) (b)

measured distance

pose 1 data pose 2 data

detected sphere center

0 1
0

0.06

(c)
modified kinematic model optimization

hand-eye calibration by solving  AX=XB

fiducial marker based method

Fig. 7. (a) Standard ball-bar used for quantifying 3D data stitching
error. (b) Stitched 3D point cloud captured from two different poses.
(c) Absolute data stitching error by modified kinematic model optimiza-
tion, fiducial marker-based method, and traditional hand-eye calibration.
Each measurement was repeated ten times.

Since DH parameters deteriorate over time in long-term
operation and errors in DH parameters cause inaccuracies
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in hand-eye calibration and subsequent 3D data stitching,
we modified the standard kinematic model with a virtual
arm-based model. A certified standard ball-bar was measured
(Fig. 7 (a)) to evaluate the performance of the virtual arm-
based kinematic model. The ball-bar has a center-to-center
distance of 100.2073 mm as verified by a coordinate measuring
machine (CMM). The ball-bar was scanned from two different
poses to capture one ball at a time in each pose, and the data
were stitched together, as shown in Fig. 7 (b). The metric of
absolute measurement error is

εd = |Lm − Lb| (17)

where Lm is the measured distance and Lb represents the
CMM-measured data.

In the experiment, the scanner was calibrated using the
proposed calibration technique first. Then errors up to 1% with
an interval of 0.1% were artificially added to all the 28 DH
parameters (seven links) of the robot to mimic the elongation
of the robot links due to increase in temperature over time.
To prove the repeatability of the result, each measurement
was performed ten times with different relative position and
orientation of the ball-bar with respect to the robot base frame
for each added error percentage, and the average absolute
stitching error was quantified. Performance of the virtual arm-
based kinematic model was compared with that of the fiducial
marker-based method, and that of the traditional hand-eye
calibration by solving the equation of the form AX = XB
with erroneous DH parameters.

As seen in Fig. 7 (c), with the traditional hand-eye cal-
ibration (i.e., using erroneous DH parameters and hand-eye
transformation), a data stitching error of 1.1638 mm was
obtained for 1% of DH error. This is because of bias in
the X calculation in solving AX = XB due to errors in
DH parameters. Differently, our modified kinematic model
integrates scanner frame into the original kinematic model by
using the virtual-arm technique, and the modified model is
represented by pure DH parameters which can be calibrated
and optimized in one go. For each DH error percentage, our
proposed method and fiducial marker-based method achieved
similar mean stitching errors without significant differences
(0.0446 mm vs. 0.0542 mm, p = 0.525). These results prove
that our proposed method is immune to errors in DH pa-
rameters and is capable of achieving similar data stitching
accuracies as the cumbersome fiducial marker-based method.

D. Overall Performance Evaluation

In this experiment, a part of a large automotive car cross
beam (CCB) (600 mm x 300 mm) was measured firstly by
a Faro CMM (ScanArm) to generate benchmarking data. The
CCB is a complex automotive part with many features, which
was chosen for measurement in this work for obtaining an ac-
curate 3D point cloud. The data collection time was about two
hours for each part. Our system scanned each part completely
with six different poses. Data stitching was conducted with our
proposed method and fiducial marker-based method. Quantita-
tive comparisons were made by registering the measured data
with CMM benchmarking data. In Fig. 8(a)(b), the point cloud
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Fig. 8. Comparison of 3D point cloud obtained by our proposed method
(a) and by fiducial marker-based method (b) with benchmarking data
by CMM. (c) Comparison of time cost for measuring ten parts using the
fiducial marker-based method and our proposed method. (d) Continuous
operation of system for 5 hours without recalibration. (e) During 5-hr
operation, recalibration was conducted after each hour.

areas with large positive and negative deviations from the point
cloud obtained from benchmarking CMM are highlighted
towards red and blue, respectively, while the green color
denotes the least deviation. Compared to benchmarking data,
our proposed method achieved a similar absolute data stitching
error compared with the fiducial marker-based method.

Ten other different industrial parts such as front-end stamp-
ing parts, car beam bracket, and fuel filler door were then
measured. To compare the time cost by our proposed method
and the fiducial marker-based method, measurement was per-
formed on these parts, as summarized in Fig. 8 (c). Manual
steps such as marker placement and removal in the fiducial
marker-based method caused an average downtime of 3.97
minutes for each part. Using our proposed method, calibra-
tion was performed once in the beginning, which caused 82
seconds (15 seconds for scanner calibration and 67 seconds

Authorized licensed use limited to: The University of Toronto. Downloaded on August 22,2020 at 19:39:02 UTC from IEEE Xplore.  Restrictions apply. 



0278-0046 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2020.3009568, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

for robot-scanner kinematic modelling and optimization). In
subsequent recalibration when needed (e.g., after an hour of
continuous scan/measurement), the downtime became lower
than 82 seconds because the optimized values from the pre-
vious calibration were used as initial estimates in the next
optimization run. For measuring the ten parts, the total time
taken by the fiducial marker-based method was 43 minutes
while our proposed method only took 7 minutes.

The system was then operated continuously for five hours
without recalibration throughout the process (i.e., only using
the traditional scanner calibration, initial DH parameters and
hand-eye transformation) as summarized in Fig. 8 (d). For
comparison, our proposed calibration method (including scan-
ner calibration refinement and regular recalibration) was con-
ducted after continuous measurement for each hour (downtime
≈ 78 seconds) as shown in Fig. 8 (e). The experimental results
showed that the initial absolute stitching error of the proposed
calibration method (about 0.05mm) was less than the error of
traditional method without recalibration (about 0.15mm). In
the traditional method without recalibration, absolute stitching
error increased gradually over time due to increase in errors
of DH parameters (up to 0.25mm). In contrast, the absolute
stitching error is effectively maintained to be <0.1 mm with
our proposed method, and each recalibration costs an average
downtime of 78 seconds. Since the measurement without
recalibration (Fig. 8 (d)) and with our proposed method (Fig. 8
(e)) were performed in separate operating conditions, and due
to the random nature of environmental factors such as wear,
temperature changes, and vibrations, differences in slopes of
the error curves were observed.

Note that although state-of-the-art DH calibration tech-
niques [20]–[23] could be integrated into traditional method
to refine DH parameters for maintaining accuracy, the long
downtime (e.g., about 10 minutes for mounting and removing
specialized target [21], [22]) poses limitations for their appli-
cation in long-term routine industrial use. These results prove
that our proposed method is capable of achieving accurate 3D
stitching and measurement, and the new calibration technique
reduced the time cost of about 10 minutes by the traditional
calibration method (DH calibration and hand-eye calibration
separately) to averagely 78 seconds because the proposed
method does not involve any manual steps such as attaching
and removing specialized targets to the end-effector or require
external optical/laser trackers for calibration. Note that the
proposed method is applicable for hardware combinations
with other robots (e.g., ABB and KUKA) and scanners (e.g.,
ZED [34] and Kinect [35]). The resultant absolute stitching
error obtained after calibration using the proposed method
would vary depending on the quality of hardware used.

VII. CONCLUSION

Since the accuracy of the scanner and the positioning
accuracy of a robot manipulator deteriorates over time due
to factors such as temperature changes, the errors in scanner’s
intrinsic parameters and robot’s DH parameters cause inac-
curacies in hand-eye transformation, leading to high 3D data
stitching errors. This paper presented a new calibration method

utilizing a novel scanner calibration technique, virtual arm-
based kinematic model, trajectory-based robot-world transfor-
mation calculation, and nonlinear optimization. Using these
techniques, the system achieved a low 3D data stitching error
and a short calibration time. Experimental results showed that
a low initial stitching error (0.0446 mm) was achieved after
applying recalibration, the mean stitching error was effectively
maintained to be <0.1 mm during the continuous measurement
with an average intermittent downtime of 78 seconds for
recalibration.
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