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Abstract - This paper presents a new design of a two-axis 
MEMS (microelectromechanical systems) capacitive force sensor 
with strict linearity and a new sensor calibration method for 
micro-sensors. Precise calibration of multi-axis micro force 
sensors is difficult for several reasons, including the need to apply 
many known force vectors at precise orientations at the micro 
force scale, and the risk of damaging the small, fragile MEMS 
device. In this paper the shape from motion method is introduced 
for micro force sensors resulting in a rapid and effective 
calibration technique. Structural-electrostatic coupled field 
simulations are conducted in order to optimize the sensor design, 
which is calibrated with the shape from motion method as well as 
the least squares method for comparison purposes. Calibration 
results demonstrate that the shape from motion method is an 
effective, practical, and accurate method for calibrating multi-
axis micro force sensors. 

Index Terms - MEMS force sensor, multi-axis, calibration, 
shape from motion 

I. INTRODUCTION

The accurate measurement of small forces is crucial for 
realizing force-controlled micromanipulation and for 
understanding many fundamental processes of biological 
systems. There are five basic mechanisms used to measure 
forces: (a) balancing the unknown force against a standard 
mass through a system of levers; (b) measuring the 
acceleration of a known mass; (c) equalizing the force to a 
magnetic force or an optical force generated by the interaction 
of a current-carrying coil and a magnet or by the interaction of 
a laser beam and a trapped bead; (d) distributing the force over 
a specific area to generate pressure and then measuring the 
pressure, based on which the force is indirectly derived; and 
(e) converting the applied force into the deformation of an 
elastic element.  

In the case of MEMS capacitive force sensors [1][2][3], 
small deflections caused by applied forces are transduced into 
detectable capacitance changes. An electronic circuit converts 
the capacitance variations into DC-voltage variations. With 
their ability to measure forces from the mN (10-3 Newton) to 
nN (10-9 Newton) range, MEMS capacitive force sensors are 
suitable for a wide range of biological studies that provide not 
only qualitative but also quantitative information on the 
cellular, sub-cellular, and organism levels. These 
measurements are instrumental in understanding the 

fundamental elements of biological systems. Due to their high 
performance and their ability to measure forces along multiple 
axes, capacitive MEMS force sensors are powerful alternatives 
to other MEMS transducers, such as cantilever-based sensors 
[4][5][6]. Compared to force measurement techniques such as 
optical tweezers [7][8], ultra fine glass needles (also known as 
the microneedle technique) [9][10], atomic force microscopy 
(AFM) [11][12][13][14], the magnetic bead measurement 
method [15][16][17], and micropipette aspiration [18][19], 
MEMS capacitive force sensors provide the following 
advantages: (a) they are capable of measuring a wide range of 
forces from mN to pN (10-12 Newton); (b) they are capable of 
providing force information along multiple axes; (c) they 
provide the most direct means of force measurement instead of 
indirectly obtaining force information from pressure 
measurements; (d) they have the advantage of low power, low 
noise, high sensitivity, and insensitivity to temperature 
variation; and (e) batch microfabrication processes are capable 
of manufacturing hundreds of these transducers 
simultaneously, making them cost effective.  

Although multi-axis capacitive micro force sensors can be 
produced by microfabrication with a high yield, calibrating 
these small, fragile multi-axis devices is time consuming and 
risky in terms of device destruction. This paper presents a 
shape from motion calibration technique and its application to 
calibrating multi-axis micro force sensors. The method is 
based on an extension of a computer vision technique for 
determining an object’s 3D shape based on a sequence of 2D 
images [20]. Although multi-axis capacitive micro force 
sensors are used as an example, the shape from motion 
calibration method is not limited to the capacitive sensing 
mechanism or to force transduction [21].  

Common methods of sensor calibration employ a tedious 
scheme that requires many readings from the sensor under 
precisely known loading conditions. A least squares method is 
typically used to combine these readings into a best-fit 
calibration matrix. In contrast, the shape from motion method 
uses a large number of unknown forces applied to the multi-
axis force sensor in random directions. These forces are 
related through the simple constraint that all applied 
calibration forces are of the same magnitude. Using singular 
value decomposition, both the calibration matrix and the 
applied forces are extracted from this large number of 
“arbitrary” measurements and one single precise force input. 
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Thus, accurate calibration can be achieved with much less 
effort than the traditional scheme, since the majority of the 
measurements do not require precisely known force inputs, the 
uncertainty of which introduces an additional error source.    

For capacitive multi-axis micro force sensors, the shape 
from motion calibration method eliminates the use of comb 
drive actuation for “self-testing”, which requires a dedicated 
chip area for actuation comb drives. The “self-testing” 
technique is also limited by the intrinsic pull-in limit [22] 
which makes full-range calibration infeasible. Furthermore, the 
shape from motion calibration method minimizes the 
possibility of damaging the tiny, fragile micro force sensors 
during calibration.  

This paper presents a new design of a two-axis capacitive 
micro force sensor with strict linearity. A coupled structural-
electrostatic finite element simulation is conducted. The sensor 
is calibrated with the shape from motion method as well as the 
least squares method for comparison purposes. Calibration 
results demonstrate that the shape from motion method is an 
effective, practical, and accurate method for calibrating multi-
axis micro force sensors.  

II. MULTI-AXIS FORCE SENSOR CALIBRATION

A multi-axis force sensor converts an applied force vector, 
m, into a measurement vector, z. If the system is linear, the 
calibration function, which is a constant matrix C, transforms z
into m as 

           mzC  or TTT mCz                              (1) 
With the calibration matrix known, applied forces are resolved 
from given measurement vectors. 

A.  Lease Squares Calibration  
The most common technique for force sensor calibration 

is the least squares method, which requires that many exactly 
known force vectors, mi, are applied to the multi-axis force 
sensor and the corresponding sensor output (i.e., the 
measurement vectors, zi) measured. Then, (1) becomes 
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The calibration matrix, TC  can be obtained by the pseudo-
inverse of the measurement matrix, Z

MZCT                                      (3) 
The precise application of force vectors makes the least 

squares calibration process tedious for macro-scaled force 
sensors and extremely difficult to implement for micro-scaled 
force sensors. The error in applied force vectors must be 
minimized for an accurate calibration, because the error 
manifests itself directly in the calibration matrix. This error 
can only be minimized by exercising extreme care when 
applying forces during calibration. Thus, incorporating a large 
number of redundant data points in the least squares 
calibration is difficult and time consuming due to the error 
minimization requirement of applied forces.   

B. Shape from Motion Calibration 
Unlike the least squares calibration method, the shape 

from motion method [21] does not require the application of 
exactly known forces, but only a constraint that relates them 
(i.e., force magnitude must be constant). Therefore, redundant 
force vectors and corresponding measurement vectors can be 
obtained rapidly to establish the calibration matrix. A small 
number of exactly known applied forces are used to establish 
the reference data frame, but none of the redundant data 
requires precisely applied forces. The ability to readily  and 
rapidly collect and apply massive amounts of redundant data in 
shape from motion calibration accounts for its significant 
advantage over the conventional least squares method.

In the shape from motion calibration approach, the 
calibration matrix encodes the mechanical structure of the 
force sensor, including the placement of sensing elements and 
the properties of the material from which it is made. These are 
what define the sensor’s intrinsic shape. The motion refers to 
the movement of the applied forces around the sensor. Shape 
from motion refers to the fact that the shape of the force sensor 
can be recovered by knowing the theoretical rank of the shape 
and applying arbitrary motion to the force. 

The derivation of the shape from motion calibration 
algorithm begins with the following representation of the 
sensor function 

Smz TT
ii                                      (4) 

where T
iz  is a 1 p measurement vector, T

im  is a 1 m load 
vector, and S  is the m p shape matrix. There are p sensing 
elements and m degrees-of-freedom. From (1), the calibration 
matrix, C  can be derived from the shape matrix S

TC S                                        (5) 

If n force vectors are applied and corresponding measurements 
are collected, (4) can be re-written as  

SMZ                                        (6) 
where Z is the n p measurement matrix and M is the n m
matrix that represents the motion matrix encoding the forces 
applied to the sensor. 

From a singular value decomposition, M and S can be
determined simultaneously with a given Z. SVD produces a 
unique decomposition from any n p matrix 

                   TVUZ                                 (7)  
where U is an n n orthogonal matrix,  is a n p diagonal 
matrix of the singular values of Z in descending order, and V
is a p p orthogonal matrix.  

Assuming the proper rank of Z is r, the best projection of 
Z onto an r-dimensional space (for r p) is  

       
T**** VUZ                               (8) 

where U* consists of the first r columns of U, *  is a diagonal 
matrix of the first r singular values, and V*T consists of the 
first r rows of VT. Combining (6) and (8) yields, 

      * * * ˆˆTU V M S
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Fig. 1 Design of a two-axis micro force sensor with two decoupled frames 
and differential tri-plate comb drives along both x and y directions. 

     
    21**ˆ UM                   (9)              

T*21*ˆ VS

At this stage, M̂  and Ŝ  are not yet the true motion and shape 
matrices. Introducing an affine transformation, given any 
invertible r r matrix A, produces an equivalent de-
composition 

SAAMSM ˆˆˆˆ 1                                (10)
Then, the motion and shape matrices can be written as 

1ˆ AMM  and SAS ˆ                           (11) 
where A-1 is a particular affine transformation that enforces the 
previously mentioned constraint relating the measurements. In 
order to solve A-1, a geometric constraint can be applied to the 
individual vectors of the motion matrix. Once A is known, S
and C can be obtained from (11) and (5). Finally, precise 
measurements are introduced to orient the calibration matrix 
with respect to the desired reference frame and to scale the 
results to the desired engineering units.  

III. MODELING AND SIMULATION 

A. Design of a Two-Axis Capacitive Micro Force Sensor 
Fig. 1 shows a schematic drawing of the two-axis micro 

force sensor design. The sensor probe transmits forces 
deflecting the unidirectionally compliant springs in the x and y
directions. The deflection displaces the movable center 
structure and the movable capacitor plates (i.e., comb fingers). 
Total capacitance changes resolve applied forces. The two 
decoupled frames (i.e., the movable inner frame and the outer 
constrained frame) avoid the rotation of the movable center 
structure and capacitor plates, thus, promising strict linearity, 
which is an improvement over the previous two-axis designs 
[1]. The decoupled-frame design guarantees that forces are 
directly transmitted from the sensor probe to the centroid of 
the movable center structure. When the x component of an 
applied force is along the positive x-direction, the gap dx1 in 
Cx1 increases while the gap dx2 in Cx2 decreases. Capacitance 
varies according to   

0 0
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x x
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where n is the number of comb finger pairs, t and l are comb 
finger thickness and length, and x is the displacement caused 
by the x-component of applied forces. Such comb drive 
configurations are based on a previous differential tri-plate 
comb drive design [3]. Using a differential capacitive voltage 
divider circuit [3], sensor output from forces applied in the x
direction, Vout-x is 

1 2

1 2

x x
out x s

x x

C C
V V

C C
(14)

Similar to (12)-(14), a symmetrical description applies to the y
direction. 

Sensor stiffness is determined by the spring dimensions. 
The springs are modeled as beams with two fixed ends in both 
x and y with a point load applied in the middle. The force-
deflection model is  

3

34

Fl
d

Ew t
(15)

where F is the x- or y-component of an applied force, E is the 
Young’s modulus of silicon, and l, w, and t are spring length, 
width, and thickness. Fig. 2 shows a solid model of the two-
axis micro force sensor design, and Table 1 summarizes the 
design specifications. 

Fig. 2 (a) Solid model of the two-axis capacitive micro force sensor design 
with the x-y-z coordinate frame defined. (b) For calibration, the sensor is 
mounted vertically, for example to a stepper motor, so that the weight of the 
movable parts of the sensor acts as a constant-magnitude load to the sensor as 
the complete sensor frame is rotated counter-clockwise around the z-axis. The 
schematic shows the initial sensor orientation at zero degree. 

TABLE I 
SENSOR DESIGN SPECIFICATIONS.

Base 5.2 mm  3.0 mm  0.5 mm 
Sensor probe 0.2 mm  1.5 mm  50 m

Movable center 2 mm  2.5 mm  0.3 mm 
Capacitance plates 0.45 mm  5 m  50 m

Springs 0.5 mm  4 m  50 m
Spring Stiffness 16.384 N/m 

Overlap area (t  l) 50 m 400 m
Gap between combs (dx1,2 and dy1,2) 5 m

Gap between combs (dx3 and dy3) 30 m
Number of comb finger pairs (n) 52 

x

y

5.2 mm 3.0 mm

x

y

z
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Fig. 3 Structural-electrostatic coupled simulation. (a) Finite element model. 
(b) Zoom-in view of the boxed area in (a). The color changes represent 
electric potential distribution that changes with applied forces.  

B. Structural-Electrostatic Coupled Simulation 
The two-axis micro force sensors can be microfabricated 

using a deep-reactive-ion-etching (DRIE) on silicon-on-
insulator (SOI) recipe [3]. In order to calibrate the sensor 
using the shape from motion method, the sensor is mounted 
vertically, for example to a stepper motor, so that the weight of 
the movable parts of the sensor acts as a constant-magnitude 
load to the sensor as the complete sensor frame is rotated 
counter-clockwise around the z-axis (Fig. 2(b)). When the 
sensor is rotated, the gravity force of the movable parts of the 
sensor loads the suspended x and y springs. The movable parts 
include the sensor probe, center structure, suspended springs, 
movable comb fingers, and the inner frame. Through-holes are 
constructed on the movable inner frame to minimize the 
mismatch of the gravity force on the x and y directional springs 
during rotation (Fig. 3(b)). In this design, the gravity force of 
the inner frame and the sensor probe are made negligible 
compared to the movable center structure. Although the 
gravity force always applies to the centroid of the movable 
center structure during rotation, it is equivalent to a direct 
application of forces of an equal magnitude to the sensor 
probe. Thus, no transformation is needed from the centroid of 
the movable center structure to the sensor probe. Structural-
electrostatic coupled finite element simulation is conducted 
using ANSYS , in which electrical potential energy E in the 
comb drive sets is obtained from gap changes between comb 
finger pairs caused by applied forces. Capacitance is 
subsequently obtained from the electrical potential energy.  

2

2E
C

V
(16)

IV. RESULTS AND DISCUSSION

A. Shape from Motion Calibration 
Initially, let us assume a noise-free calibration procedure. 

The gravity force of the movable parts serves as a constant-
magnitude force applying in random directions in the x-y plane 
to the force sensor with x-y plane defined in Fig. 2(b). In 
simulation, the force sensor is rotated in two-degree steps for a 
total of 360 degrees. In practice, the 181 measurement points 
can be readily obtained by rotating the sensor around the z axis 
with a stepper motor. From (4), 

11 12
1 2

21 22

z z cos sini i i i

s s

s s
or

         11 12

21 22
ix iy ix iy

s s
V V F F

s s
                 (17) 

The force has been arbitrarily set to one unit, leaving only cos
and sin in the motion matrix, M. This gives a motion 
constraint equation as  

M MT=1  or cos2 + sin2 =1                      (18)
The rank of the shape matrix is at most 2 so that the 

proper rank of the n p measurement matrix, Z, is also 2. 
Denote the elements of A-1 by a11, a12, a21, and a22 and the ith 
row of M̂  by mi1 and mi2, then substitute (11) into (18) 

2 2 2 2 2 2
1 11 12 1 2 11 21 12 22 2 21 212 1i i i im a a m m a a a a m a a (19)

where the coefficients of the quadratic equation 2
12

2
11 aa ,

22122111 aaaa , and 2
21

2
21 aa  can be solved with the least 

squares method. Then, the individual aij values can be 
obtained numerically with the assumption of a12= a21 or a21 =
0. The symmetrical upper triangular matrix, A, ensures 
invertibility. With A-1, the shape matrix S is solved using (11) 
and the calibration matrix C is solved using (5). At this stage, 
however, the resulting calibration matrix C is not yet oriented 
in any particular direction. To align it with the desired 
reference frame, only one precise load (i.e., a z, m pair, both 
vectors known) is needed to rotate and scale the calibration 
matrix appropriately. 

   T

0.2848 0.0001

0.0002 0.2877o Rot
m

C C
C z

    (20) 

where Co is the final, oriented calibration matrix,  is the 
angular difference between m and Cz, and Rot( ) is the 2  2 
rotation matrix. Fig. 4 shows a plot of the recovered motion 
(i.e., forces) from one calibration trial. The motion 
demonstrates nearly perfect average circularity that verifies the 
validity of the calibration results. The cross in the plot 
corresponds to the calibration data point when the sensor is 
oriented along the 180-degree direction. 

outer frame 
constrained  

through holes on inner  
movable frame  
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Fig. 4 Plot of the recovered motion (i.e., forces) from one calibration trial.  

B. Comparison to Least Squares Method 
In order to compare the shape from motion method to the 

conventional least squares method, 20 known data pairs (i.e., 
measurement vectors and precise force vectors) from 
simulation are used to obtain the least squares calibration 
matrix from (2) 

       20

0.2845 0.0003

0.0000 0.2900LSC                          (21) 

Another 181 known data pairs are used to verify the accuracy 
of the sensor output based on the shape from motion 
calibration matrix and the least squares matrix. Fig. 5 shows 
the sensor force estimates based on the corresponding sensor 
voltage output along the x and y directions and the calibration 
matrices obtained from the shape from motion method and the 
least squares method. We argue, for multi-axis sensors, the 
orthogonality of the force components is the most important 
metric of performance. To compare this, we look at the 
circularity of the resulting constant magnitude vectors (as in 
the plot in Fig. 4). A metric of the circularity is the standard 
deviation of the magnitude of these vectors. If the standard 
deviation is zero, the plot is a perfect circle. For the shape 
from motion method, the circularity metric is 0.0802, while it 
is 0.1390 for the least squares method. Furthermore, the 
average accuracy of the  x  and  y components of the estimated 
force vectors for the shape from motion method is 0.502% in 
the x direction and 0.495% in the y direction. The 
corresponding error numbers for the least squares method are 
0.586% in the x direction and 0.707% in the y direction. 

When the same number of data points is used for the least 
squares method (181 precisely applied loads, which is 
unrealistic in practice), an improved calibration matrix results,  

        181

0.2848 0.0000

0.0000 0.2877LSC                         (22) 

the circularity of the least squares result is 0.0787, which is 

comparable and slightly more accurate than the result for the 
shape from motion method. The average accuracy of the x and 
y components from the least squares method is also slightly 
better than the shape from motion method, 0.498% in the x
direction and 0.456% in the y direction but, again, they are 
comparable. In reality, errors in the applied loads used in the 
least squares method tend to sacrifice orthogonality for 
average performance. 

Thus, the benefit of the shape from motion method is a 
higher accuracy (comparing the results of 181 shape from 
motion data points to 20 least squares data points) with less 
effort and much less chance of damage to the small, fragile 
MEMS force sensors. Even when comparing an equivalent 
number of data points for each method, which is unrealistic for 
the least squares method due to the level of effort involved, 
the two techniques produce comparable performance. 

The measurement vectors and force vectors used for the 
above comparisons do not include noise. In order to 
investigate how noise affects calibration results, uniformly 
distributed random noise on the interval of [-1mV, 1mV] is 
injected into the measurement vectors and [-0.1 N, 0.1 N]
into the force vectors. For the shape from motion method, the 
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Fig. 5 Force estimates based on the least square calibration method and the 
shape from motion calibration method in the x and y directions. 
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circularity metric deteriorates from 0.0802 to 0.0814, and the 
average accuracy of the x and y components of the estimated 
force vectors becomes 0.508% in the x direction and also 
0.508% in the y direction, which demonstrates that the shape 
from motion method has a strong noise rejection capability. 
With random noise injected, the least squares method based on 
20 known data pairs produces a circularity metric of 0.1406 
compared to 0.1390 in the noise-free case, and the average 
accuracy of the x and y components of the estimated force 
vectors becomes 0.595% in the x direction and 0.741% in the 
y direction.  

It must be noted that the shape from motion method is not 
equivalent to gravity-based calibration. Although loads from 
the weight of the movable center structure can be estimated 
and treated as known forces at each sensor orientation, they are 
assumed to be unknown in the shape from motion calibration 
method. Thus, possible load errors from the estimate of the 
weight of the movable center structure and practical sensor 
orientation control are avoided. In the calibration of the two-
axis capacitive micro force sensor, only one known load vector 
is used and all the other redundant data are collected from the 
rotation process.  

V. CONCLUSION

This paper presents the design of a two-axis MEMS 
capacitive force sensor with strict linearity. The shape from 
motion method is introduced into the domain of calibrating 
multi-axis micro force sensors. Practically, the shape from 
motion calibration approach allows for collecting many more 
data points with less time, less effort, greater accuracy, and 
lower possibilities of damaging the small, fragile MEMS force 
sensors compared to the least squares method. Additionally, 
the shape from motion calibration method demonstrates a 
strong capability of noise rejection. In order to apply the shape 
from motion calibration method, two necessary conditions 
must be satisfied: (i) the multi-axis micro force sensor is a 
linear system; (ii) the applied force magnitude is constant. 
Although in this paper the shape from motion method is used 
to calibrate the two-axis capacitive micro force sensors, it is 
not limited to the capacitive sensing mechanism and can be 
extended to three-axis and six-axis sensor calibration [21]. 
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