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Summary

Autofocusing is a fundamental procedure towards automated
microscopic evaluation of blood smear and pap smear samples
for clinical diagnosis. This paper presents comparison results
of 16 selected focus algorithms based on 8000 static bright-
field images and 1600 dynamic autofocusing trials using 10
blood smear and pap smear samples. Besides static behaviour,
dynamic autofocusing performance is introduced for ranking
the 16 focus algorithms. The Fibonacci search algorithm is
employed for controlling the z-motor of the microscope to
reach the focus position that is determined by focus objective
functions. Experimental results demonstrate that the variance
algorithm provides the best overall performance. Together with
our previously reported findings, it is demonstrated that the
variance algorithm or the normalized variance algorithm is
the optimal focus algorithm for non-fluorescence microscopy
applications including pap smear and blood smear imaging.

Introduction

Manual microscopic examination of hundreds or thousands
of blood smear and pap smear samples is routinely performed
by cytotechnologists and pathologists in clinical and hospital
laboratory environments. Pap smear, which is a sample with
cervical cells on a glass slide, is the most important diagnostic
technique for detecting pre-invasive cervical cancer. Peripheral
blood smear provides information on the number and shape
of blood cells for detecting blood-related diseases, such as
anaemia and leukaemia.

Advances have been made to make smear interpretation
more descriptive, paving the foundation to the realization of
automated computer-assisted microscopic diagnosis (Simon
et al., 1986; Angulo & Flandrin, 2003). Fully automated
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microscopic diagnosis is advantageous in that it will not only
alleviate the tremendous workload from medical professionals
(e.g. each pap smear contains roughly 50,000 to 300,000
cells) and result in greater efficiency; but more importantly,
an automated microscopic diagnostic system will be capable
of encompassing expert knowledge from diverse specialties
within pathology to detect a multitude of diseases or a
comprehensive disease pattern. Towards the realization of fully
automated microscopic diagnosis of blood and pap smear,
bringing a sample into focus or autofocusing is a fundamental
procedure to perform.

Although autofocusing is a long-standing research topic
and many focus algorithms have been proposed, the selection
of the optimal algorithm for specific experimental microscopy
applications remains ad hoc. The autocorrelation algorithm
(Vollath, 1987, 1988) was found to be the optimal focus
algorithm for fluorescence microscopy applications (Santos
et al., 1997). We previously demonstrated that the normalized
variance algorithm provided the best performance for several
types of non-fluorescence samples under bright field, phase
contrast, and differential interference contrast (Sun et al.,
2004).

This paper focuses on the determination of the optimal
focus algorithm for pap smear and blood smear bright-field
imaging through a systematic evaluation of 16 commonly
used focus algorithms that were applied to 10 blood smear and
pap smear samples. Based on an evaluation methodology that
examines the static performance of focus algorithms, we have
recently demonstrated that the variance algorithm provides
the best overall static performance for pap and blood smear
(Liu et al., 2006). In order to evaluate the dynamic focusing
performance of each algorithm, which is directly relevant to
the implementation of automated microscopic diagnosis of
blood and pap smear, the Fibonacci search algorithm was
selected for controlling the z-directional motor (i.e. objective
position) to reach the focus position that corresponds to
the maximum value of the focus objective function. Besides the

C© 2007 The Authors
Journal compilation C© 2007 The Royal Microscopical Society



1 6 X . Y. L I U, W. H . WA N G A N D Y. S U N

five ranking criteria for static evaluation (Sun et al., 2004; Liu
et al., 2006), two new criteria (dynamic accuracy and dynamic
repeatability) are introduced for dynamically evaluating the
selected focus algorithms.

Materials and method

As shown in Fig. 1, 10 samples (five blood smears and
five pap smears) were experimentally tested in this study.
These representative samples were selected as they include
a variety of information. The five blood smear samples
were prepared in the Princess Margaret Hospital (Toronto,
Canada), and the five pap smear samples were prepared in
the Sunnybrook Health Sciences Centre and Women’s College
Hospital (Toronto, Canada). The thickness is 15–20 μm for
the blood smear samples and 10–15 μm for the pap smear
samples.

Figure 2 shows the experimental setup that consists of
a motorized inverted microscope (Olympus IX81), a CMOS
digital camera (Basler A601f) and a host computer (3.2 GHz
CPU with 1.0 GB RAM) for image processing and motion
control. The minimum vertical motion step of the microscope
is 0.01 μm. The camera has a pixel size of 9.9 × 9.9 μm.
An objective (Olympus LUCPlanFLN, 1.9 μm depth of field,
NA 0.6 and 0.5μm resolution) and the bright-field observation
method were used. The total magnification of the observation
system (objective, coupler and camera) is 40×. Multiplying
this 40× magnification with the resolution of the objective
(0.5 μm), one can confirm that the pixel size of the camera
(9.9 μm) satisfies the Nyquist theorem. Thus, no frequency
aliasing in image acquisition occurred.

For static evaluation, 10 image sets corresponding to the
10 samples were collected with a step of 0.25 μm. Each set
contains 800 images (640 × 480), amounting to a total of
8000 still images that were processed using the 16 focus
algorithms presented in the Focus Algorithms section. Besides
static evaluation, the z-motor of the microscope was controlled
in real time for studying the dynamic behaviour of the 16
algorithms. For each sample, 10 dynamic autofocusing trials

Fig. 2. System setup for investigating autofocusing of blood smear and pap
smear samples.

were conducted for each focus algorithm, amounting to 1600
dynamic autofocusing trials.

Focus algorithms

A common rationale of focus algorithms is that focused
images contain more information and details (e.g. edges)
than unfocused images, based on which an objective function
indicating the sharpness of images is used to evaluate the
degree of focusing. The focus position is obtained when the
objective function reaches its extremum. In this study, 16 focus
algorithms that are most commonly used in the literature were
compared to determine the optimal focus algorithm for pap
smear and blood smear bright-field imaging. These algorithms
are classified into four groups (Sun et al., 2004). In order to
make the paper self-contained and facilitate the discussion of
results presented in the Experimental Results and Discussion
section, the focus algorithms are briefly summarized as
follows.

Derivative-based algorithms

Thresholded absolute gradient (Santos et al., 1997). The absolute
value of first derivative is accumulated when it is larger than a

Fig. 1. Bright-field images of five blood smear samples (top) and five pap smear samples (bottom).
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pre-defined threshold v :

fthre grad =
∑

height

∑
width

|i (x + 1, y) − i (x, y)|, (1)

where i(x, y) is the grey level intensity of pixel (x, y), and
|i (x + 1, y) − i (x, y)| ≥ v.

Squared gradient (Santos et al., 1997).

fsqua grad =
∑

height

∑
width

(i (x + 1, y) − i (x, y))2 , (2)

where (i (x + 1, y) − i (x, y))2 ≥ v.

Brenner gradient (Brenner et al., 1971).

fBrenner =
∑

height

∑
width

(i (x + 2, y) − i (x, y))2, (3)

where (i (x + 2, y) − i (x, y))2 ≥ v.

Tenenbaum gradient (Krotkov, 1987; Yeo et al., 1993).

fTenengrad =
∑

height

∑
width

(
Sx(x, y)2 + Sy(x, y)2)

, (4)

where Sx(x, y) and Sy(x, y) are the convoluted images with
Sobel operators.

Energy Laplace (Subbarao et al., 1993). The second derivative
C(x, y) is computed by convolving an image with the
convolution mask:

L =

⎡
⎢⎣

−1 −4 −1

−4 20 −4

−1 −4 −1

⎤
⎥⎦

and the objective function is

fenergy Laplace =
∑

height

∑
width

C (x, y)
2
. (5)

Sum of modified Laplace (Nayar & Nakagawa, 1994).

fSML =
∑

height

∑
width

(|L x(x, y)| + ∣∣L y(x, y)
∣∣) , (6)

where L (x, y) are convoluted images with Laplacian operators.

Sum of squared Gaussian derivatives (Geusebroek et al., 2000).

fsum Gaus deri = 1
MN

∑
height

∑
width

(
G x(σ )2 + G y(σ )2)

, (7)

where Gx(σ ) and Gy(σ ) are first-order Gaussian derivatives in
horizontal/vertical directions. The scale can be determined by
σ = d/2

√
3, where d is dimension of the smallest feature.

Statistical algorithms

Variance (Groen et al., 1985; Yeo et al., 1993).

fvariance = 1
H · W

∑
height

∑
width

(
i (x, y) − ī

)2
, (8)

where ī is the mean intensity of the image, and H and W are
image height and width.

Normalized variance (Groen et al., 1985; Yeo et al., 1993).

fnorm vari = 1

H · W · ī

∑
height

∑
width

(
i (x, y) − ī

)2
. (9)

Autocorrelation (Vollath, 1987; 1988).

fauto corr =
∑

height

∑
width

i (x, y) · i (x + 1, y)

−
∑

height

∑
width

i (x, y) · i (x + 2, y). (10)

Standard deviation-based correlation (Vollath, 1987, 1988).

fstddev corr =
∑

height

∑
width

i (x, y) · i (x + 1, y) − H · W · ī 2.

(11)

Histogram-based algorithms

Range algorithm (Firestone et al., 1991). Denote the number of
pixels with intensity i by h(i), the objective function is

frange = max{i | h (i ) > 0} − min{i | h(i ) > 0} (12)

Entropy algorithm (Firestone et al., 1991).

fentropy = −
∑

i

pi · log2( pi ), (13)

where pi = h(i )/H · W.

Intuitive algorithms

Thresholded content (Mehdelsohn & Mayall, 1972; Groen
et al., 1985). Objective function of this algorithm is the sum of
intensities above a certain threshold.

fthre cont =
∑

height

∑
width

i (x, y), (14)

where i (x, y) ≥ v.

Thresholded pixel count (Groen et al., 1985).

fpixel count =
∑

height

∑
width

c (i (x, y), v) , (15)

where

c (i (x, y), v) =
{

1, i (x, y) ≤ v

0, else

Image power (Santos et al., 1997).

fpower =
∑

height

∑
width

i (x, y)2, (16)

where i (x, y) ≥ v.
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Dynamic search of objective function extremum

To search for the focus position of a sample, the
maximum/minimum (i.e. extremum) value of the focus
objective function must be precisely located. In this study, the
Fibonacci search algorithm (Beveridge & Schechter, 1970) was
selected for conducting the extremum search of the objective
function. Under the unimodality assumption of the objective
function, the Fibonacci search algorithm has been proven to
be the optimal algorithm for search problems (Kiefer, 1953;
Johnson, 1956) and requires the least number of computations
of objective functions for autofocusing applications (Krotkov,
1987; Yeo et al., 1993).

Fibonacci sequence consists of a series of Fibonacci numbers
Fn, which is constructed with the recursive equation Fn =
Fn−1 + Fn−2 (n > 1) and the boundary condition F0 =
F1 = 1. In Fibonacci search, the length of the initial search
space is taken as a Fibonacci number. The search space is
subdivided according to the Fibonacci sequence. When the
length of the initial search space is not a Fibonacci number,
the smallest Fibonacci number greater than the length of
the initial search space is used to subdivide the search space
proportionally.

The algorithm flow is described in Fig. 3 where all focus
objective functions are assumed to have peaks with global
maxima. The objective functions with global minima will be
inverted. In Fig. 3, the search space is denoted by [ak, bk], where
k is the iterative search index; N is the least index of Fibonacci
sequence such that FN ≥ b1 − a1; f is the focus objective
function; x1

k and x2
k are the search positions to which the z-

motor should be moved and where images should be acquired
to compute the objective functions. One can see from Fig. 3
that only one computation of the objective function is required
for all search iterations except the first iteration. As will be
discussed in the Experimental Results and Discussion section,
the computation time of all the 16 focus algorithms is within
30 ms, and only 16 computations of focus objective functions
were required throughout the autofocusing processes. Thus,
the dynamic focusing time is mainly determined by the physical
run time of the z-motor to move from its initial position to the
final focus position.

Ranking methodology

A new ranking methodology is used for dynamically and
statically evaluating the selected 16 focus algorithms on
pap and blood smear samples. The first two criteria (i.e.
dynamic accuracy and dynamic repeatability) assess the
dynamic performance of a focus algorithm and the dynamic
focusing system. The other five criteria previously used by
Sun et al. (2004) and Liu et al. (2006) comprehensively
evaluate the static performance of focus algorithms. In order
to quantitatively compare the 16 focus algorithms, all focus
curves were normalized, and the curves with global minimum
inverted.

Fig. 3. Fibonacci search algorithm.

Dynamic accuracy

Previous research (Santos et al., 1997; Sun et al., 2004; Liu
et al., 2006) studied the static accuracy of an objective function
curve to describe the accuracy of the focus algorithm. However,
dynamic search accuracy was not investigated; therefore,
the focusing accuracy of the complete dynamic system was
not represented. Considering the dynamic Fibonacci search
error, the dynamic accuracy criterion proposed in this study is
defined as the distance between the real focus position, which is
manually determined by a proficient microscopy operator, and
the maximum position dynamically located by the Fibonacci
search method. To minimize the effect of random errors, 10
autofocusing trials were conducted for each pap and blood
smear sample using each focus algorithm, and the averaged
value represents the final dynamic accuracy.

Dynamic repeatability

This criterion assesses the repeatability of dynamic
autofocusing, which is described by the standard deviation of
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the located focus positions of the 10 autofocusing trials. For an
ideal focus objective function, the Fibonacci search algorithm
would precisely locate the same maximum position every
time. In practice, the lower this measure is, the easier the same
maximum position can be reached in different autofocusing
trials.

Number of local maxima

Local maxima may trap the autofocusing algorithm and
increase the computational complexity. This criterion
represents the number of local maxima in a focus curve. The
less this measure is, the easier and faster it is to reach the global
maximum.

Range

This criterion measures the distance between two
neighbouring local minima around the global maximum.
A larger range measure permits easier searching for the
maximum of the focusing curve.

Noise level

This criterion describes the speed of the direction changes
(second derivative of the focusing curve) between local
maxima. The sum of squared second derivatives except the
value at the maximum is used to quantitatively represent
this measure. A focus curve with a lower noise level prevents
the Fibonacci search from being trapped into an erroneous
search range and therefore, guarantees the autofocusing
accuracy.

Width at 50% maximum

This criterion measures the width at 50% maximum of the
focus curve (Fig. 4). The smaller it is, the sharper the focus peak
is, and the easier it is to locate the focus position accurately.

Fig. 4. Objective function curve of the focus algorithms.

Width at 20% maximum

The width at 20% maximum (Fig. 4) is employed to evaluate the
performance of focus algorithms, which is of great importance
for providing Fibonacci search with reliable cues of function
values in a wide range to precisely locate the global maximum
(Groen et al., 1985).

Overall score

The ideal values for the above seven individual criteria (two
dynamiccriteriaandfivestaticcriteria)aredescribedinTable1,
in which the ideal values for the range and the 20% width criteria
are the total number of static images in each image set (800 in
this study for each image set). To evaluate a focus algorithm,
the difference/distance between each criterion’s ideal value
and the value of the focus curve is calculated. An ideal focus
curve has criterion distance coordinates of [0, 0, 0, 0, 0, 0, 0].
The lower a criterion distance, the better the performance of an
algorithm under this criterion. In this study, all the individual
criterion distances are normalized in order to maintain equal
weights for each criterion distance. The overall score is defined
as the Euclidean distance of a focus curve to [0, 0, 0, 0, 0,
0, 0].

Experimental results and discussion

In both dynamic and static evaluation, the 16 focus algorithms
were applied to full images (640 × 480) for computing
focus objective functions. The computation time of all the 16
algorithms is within 30 ms. The selected threshold values
for algorithms (14), (15) and (16) are 150, 170 and 180,
respectively, which were selected because the algorithms
provided their best performance with these threshold values.
It has been demonstrated that algorithms (1), (2) and (3) do
not require thresholding (Sun et al., 2004). According to the
dimension of the smallest sample feature, scale σ in algorithm
(7) was set to be 1 pixel.

For dynamic evaluation, 10 experimental autofocusing
trials were conducted for each sample using each focus
algorithm (10 smear samples and 16 focus algorithms),
amounting to 1600 dynamic autofocusing trials. The initial
search space for Fibonacci search was set to be symmetrical
around the real focus position, and its length (i.e. b1 − a1)
was set to be 800 steps with a step size of 0.25 μm. Thus,
N = 15 and FN = 987. The speed of the z-motor was set at
70 μm/s. Figure 5 shows two representative dynamic focusing
curves selected from the 1600 experimental trials. It can
be seen that the search range of Fibonacci search rapidly
narrowed and converged to the located focus position. The
total position changes and run time of the z-motor for all
searches that converged to the real focus position were fairly
close. The focusing time of the 16 focus algorithms for blood
and pap smears is summarized in Table 2, in which every
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Table 1. Ideal values for individual ranking criteria.

Criteria Dynamic accuracy Dynamic repeatability No. of local max Range Noise level 50% width 20% width

Ideal value 0 0 0 800 0 0 800
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Fig. 5. Two representative dynamic focusing curves of variance algorithm
(8) using Fibonacci search.

entry is the average value of 50 dynamic focusing trials. No
significant differences were observed in focusing time among
focus algorithms (5.24–5.71 s).

For static evaluation, a total of 8000 images collected from
the 10 blood smear and pap smear samples (Fig. 1) at each
step of 0.25 μm were processed using the 16 selected focusing
algorithms. According to individual criteria and the overall
score, the 16 algorithms were scored and ranked based on
both their dynamic performance and their static focus curves
of blood smear and pap smear. The evaluation results are
listed in Tables 3 and 4. Every entry in column no. 2 and 3
represents the average value from 50 experimental trials for
each type of samples. Every entry in column no. 4 to column
no. 8 represents the average value from five focus curves.
Smaller values in all columns of Tables 3 and 4 represent
better performance. The numbers in parentheses show the
ranking of a focus algorithm according to individual criterion
distances (column no. 2–8) or the overall score (column
no. 9).

From Tables 3 and 4, it can be seen that the variance
algorithm (8) provides the best overall performance for both
blood and pap smear samples, and that the normalized
variance algorithm (9) provides almost optimal overall
performance for both types of samples. This finding is in
agreement with our previous study on autofocusing of blood
and pap smear samples, in which only the static performance
of the focus algorithms was considered (Liu et al., 2006).
Figure 6 shows the focus curves of the variance algorithm (8)
on 10 image sets of blood and pap smear samples. One reason
that explains the best overall performance of the algorithms
(8) and (9) is that these statistical-based algorithms are less

Table 2. Dynamic focusing time of blood and pap smears.

Focusing time of Focusing time of
Algorithm blood smears (s) pap smears (s)

ThreAbsGrad (1) 5.58 5.66
SquaGrad (2) 5.62 5.71
BrennerGrad (3) 5.49 5.48
TeneGrad (4) 5.69 5.54
EnergyLapl (5) 5.53 5.41
SumModiLapl (6) 5.68 5.59
SumGausDeri (7) 5.43 5.50
Variance (8) 5.29 5.41
NormVariance (9) 5.32 5.41
AutoCorr (10) 5.54 5.50
StanDeviCorr (11) 5.38 5.40
Range (12) 5.47 5.34
EntrAlgo (13) 5.49 5.53
ThreCont (14) 5.68 5.56
ThrePixeCont (15) 5.58 5.24
ImagePower (16) 5.35 5.33

noise sensitive. The property of noise insensitivity enables these
algorithms to produce the lowest number of local maxima, the
best range and the almost lowest noise level. The contributions
of these three individual criteria are clearly reflected in the best
overall scores.

Together with our previously reported results (Sun et al.,
2004; Liu et al., 2006), the variance or the normalized variance
algorithm has been demonstrated to provide the best overall
performance for non-fluorescence microscopy applications
including pap smear and blood smear samples.

The dynamic accuracy includes the static accuracy
determined by the focus algorithm and the maximum search
error generated by Fibonacci search. The static accuracy was
computed and ranked in Table 5 (column no. 3 and 6), which
is described by the distance between the real focus position
and the maximum of the static focus curve. The Fibonacci
search error is listed and ranked in column no. 4 and no. 7
in Table 5, which is the absolute difference between dynamic
accuracy and static accuracy. It was found that an important
factor influencing the Fibonacci search accuracy is the noise
level (column no. 6 in Tables 3 and 4). Of the algorithms that
rank from 11th to 16th in terms of the Fibonacci search error
(Table 5), four algorithms (5, 6, 10 and 12) have the highest
noise level for blood smear samples and five algorithms for pap
smear samples (5, 6, 10, 12 and 15). A higher noise level in
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Table 3. Blood smear: ranking of 16 focus algorithms according to individual criteria and overall score.

Dynamic Dynamic No. of local 50% 20% Overall
Algorithm accuracy repeatability max Range Noise level width width score

ThreAbsGrad (1) 2.48 (4) 0.5715 (4) 199.8 (11) 636.0 (5) 0.002530 (10) 61.0 (5) 669.6 (13) 1.5002 (8)
SquaGrad (2) 2.38 (2) 0.2518 (1) 209.4 (13) 653.6 (9) 0.010503 (12) 31.2 (1) 724.4 (15) 1.5802 (12)
BrennerGrad (3) 2.76 (5) 1.3140 (8) 200.8 (12) 636.4 (6) 0.002960 (11) 55.6 (4) 679.6 (14) 1.5108 (9)
TeneGrad (4) 2.44 (3) 0.2826 (2) 199.6 (10) 623.6 (4) 0.001540 (9) 51.4 (3) 734.2 (16) 1.5468 (10)
EnergyLapl (5) 110.96 (15) 11.4070 (12) 232.8 (16) 787.2 (13) 0.092180 (15) 201.0 (11) 439.4 (8) 1.8800 (14)
SumModiLapl (6) 110.74 (14) 13.1570 (13) 219.0 (15) 792.2 (15) 0.027650 (14) 190.4 (10) 453.2 (9) 1.7865 (13)
SumGausDeri (7) 2.26 (1) 2.2090 (9) 171.8 (8) 690.2 (12) 0.000954 (5) 212.6 (13) 396.6 (5) 1.3372 (6)
Variance (8) 4.48 (7) 0.4262 (3) 0 (1) 0 (1) 0.000058 (1) 269.2 (14) 264.8 (2) 0.6560 (1)
NormVariance (9) 4.50 (8) 0.6189 (5) 0 (1) 0 (1) 0.000117 (3) 170.2 (8) 420.8 (7) 0.6759 (2)
AutoCorr (10) 80.00 (12) 2.7616 (10) 209.8 (14) 675.0 (10) 0.017540 (13) 34.6 (2) 522.8 (11) 1.5640 (11)
StanDeviCorr (11) 43.30 (11) 38.2990 (14) 170.8 (7) 683.4 (11) 0.000957 (7) 211.4 (12) 400.2 (6) 1.4646 (7)
Range (12) 96.18 (13) 74.1220 (16) 173.6 (9) 787.4 (14) 0.175210 (16) 461.4 (15) 135.2 (1) 2.2323 (16)
EntrAlgo (13) 131.24 (16) 50.6830 (15) 26.4 (3) 792.6 (16) 0.000087 (2) 495.2 (16) 285.0 (3) 1.9066 (15)
ThreCont (14) 6.30 (9) 6.8019 (11) 161.2 (6) 647.8 (8) 0.000392 (4) 158.6 (7) 478.4 (10) 1.3023 (4)
ThrePixeCont (15) 2.76 (5) 1.2419 (7) 122.2 (4) 636.6 (7) 0.000956 (6) 95.4 (6) 646.2 (12) 1.3245 (5)
ImagePower (16) 6.58 (10) 0.7196 (6) 123.2 (5) 556.0 (3) 0.000962 (8) 190.2 (9) 393.6 (4) 1.1034 (3)

a focus curve guides Fibonacci search to a false search range
and therefore, results in greater search errors. A high noise
level also causes poor performance in dynamic repeatability
(column no. 3 in Tables 3 and Table 4: algorithms 5, 6, 10, 12
for both blood smears and pap smears). Another factor that can
prevent Fibonacci search from precisely locating the maximum
is the appearance of multiple modalities. For example, despite
the almost lowest noise level for both blood and pap smears
in the focus curves of the Entropy Algorithm (13), the non-
unimodality features [Fig. 7: curve (A)–(E) for blood smears

and curve (A) and (E) for pap smears] result in poor Fibonacci
search accuracy (column no. 4 and 7 in Table 5) for both
blood smear samples (ranking no. 11) and pap smear samples
(ranking no. 12).

Conclusion

This paper presented a comparison study with the objective of
determining the optimal autofocus algorithm for bright-field
imaging of blood smear and pap smear samples. The dynamic

Table 4. Pap smear: ranking of 16 focus algorithms according to individual criterion and overall score.

Dynamic Dynamic No. of local 50% 20% Overall
Algorithm accuracy repeatability max Range Noise level width width score

ThreAbsGrad (1) 2.94 (3) 0.3597 (6) 203.4 (6) 666.6 (5) 0.002430 (8) 27.6 (5) 720.8 (14) 1.4917(8)
SquaGrad (2) 3.78 (7) 0.3226 (5) 230.6 (12) 763.4 (9) 0.029510 (13) 20.8 (1) 401.0 (10) 1.4207(5)
BrennerGrad (3) 4.24 (8) 0.3008 (3) 205.4 (7) 676.4 (6) 0.002680 (9) 26.8 (4) 720.6 (13) 1.5026(9)
TeneGrad (4) 3.64 (6) 0.2380 (2) 209.6 (9) 663.6 (4) 0.002950 (10) 25.6 (3) 751.2 (15) 1.5280(11)
EnergyLapl (5) 75.04 (14) 29.9190 (13) 263.6 (16) 788.0 (14) 0.031970 (14) 53.4 (7) 272.6 (2) 1.6223(13)
SumModiLapl (6) 131.58 (16) 61.2530 (14) 260.0 (15) 794.2 (16) 0.012100 (12) 369.4 (15) 308.4 (4) 2.1310(16)
SumGausDeri (7) 2.70 (2) 1.6977 (10) 227.2 (11) 781.0 (12) 0.000879 (5) 224.8 (12) 328.6 (6) 1.4915(7)
Variance (8) 2.42 (1) 0.1476 (1) 10.6 (1) 69.6 (1) 0.000127 (2) 201.8 (10) 314.0 (5) 0.6664(1)
NormVariance (9) 2.96 (4) 0.3159 (4) 10.8 (2) 69.6 (1) 0.000292 (4) 136.4 (9) 422.6 (11) 0.6669(2)
AutoCorr (10) 95.28 (15) 69.7470 (15) 234.0 (14) 723.0 (8) 0.035790 (15) 21.2 (2) 751.6 (16) 1.9700(15)
StanDeviCorr (11) 3.58 (5) 1.1611 (8) 226.4 (10) 780.2 (11) 0.000884 (6) 223.6 (11) 328.6 (6) 1.4880(6)
Range (12) 69.86 (13) 84.7850 (16) 167.8 (5) 774.4 (10) 0.145960 (16) 73.4 (8) 75.4 (1) 1.9189(14)
EntrAlgo (13) 18.00 (12) 1.3655 (9) 53.0 (3) 679.4 (7) 0.000076 (1) 395.8 (16) 279.6 (3) 1.3891(4)
ThreCont (14) 11.50 (11) 7.9903 (12) 208.6 (8) 787.8 (13) 0.000256 (3) 265.0 (14) 351.4 (8) 1.5145(10)
ThrePixeCont (15) 7.68 (10) 0.8725 (7) 98.6 (4) 644.8 (3) 0.003300 (11) 50.6 (6) 704.0 (12) 1.3026(3)
ImagePower (16) 5.96 (9) 1.9453 (11) 233.2 (13) 792.0 (15) 0.000888 (7) 243.2 (13) 365.0 (9) 1.5470(12)
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Fig. 6. Focus curves of variance algorithm (8) for 10 image sets of blood
smears (top) and pap smears (bottom).

autofocusing performance of 16 selected focus algorithms was,
for the first time, evaluated and ranked. Fibonacci search
was introduced for implementing the dynamic maximum
search of the focus objective functions. A ranking methodology

Table 5. Static accuracy and Fibonacci search error of the 16 focus algorithms for blood and pap smears.

Blood smear Pap smear

Dynamic Static Fibonacci Dynamic Static Fibonacci
Algorithm accuracy accuracy search error accuracy accuracy search error

ThreAbsGrad (1) 2.48 (4) 3.0 (1) 0.52 (3) 2.94 (3) 4.0 (7) 1.06 (7)
SquaGrad (2) 2.38 (2) 3.2 (5) 0.82 (7) 3.78 (7) 6.4 (12) 2.62 (9)
BrennerGrad (3) 2.76 (5) 3.0 (1) 0.24 (1) 4.24 (8) 4.0 (7) 0.24 (2)
TeneGrad (4) 2.44 (3) 3.0 (1) 0.56 (4) 3.64 (6) 4.2 (10) 0.56 (5)
EnergyLapl (5) 110.96 (15) 15.6 (15) 95.36 (15) 75.04 (14) 8.6 (14) 66.44 (14)
SumModiLapl (6) 110.74 (14) 10.8 (13) 99.94 (16) 131.58 (16) 7.0 (13) 124.58 (16)
SumGausDeri (7) 2.26 (1) 6.2 (11) 3.94 (10) 2.70 (2) 2.2 (1) 0.5 (4)
Variance (8) 4.48 (7) 3.8 (8) 0.68 (5) 2.42 (1) 2.6 (4) 0.18 (1)
NormVariance (9) 4.50 (8) 3.4 (6) 1.10 (8) 2.96 (4) 2.6 (4) 0.36 (3)
AutoCorr (10) 80.00 (12) 3.4 (6) 76.6 (13) 95.28 (15) 4.0 (7) 91.28 (15)
StanDeviCorr (11) 43.30 (11) 6.2 (11) 37.10 (12) 3.58 (5) 2.2 (1) 1.38 (8)
Range (12) 96.18 (13) 12.2 (14) 83.98 (14) 69.86 (13) 5.6 (11) 64.26 (13)
EntrAlgo (13) 131.24 (16) 145.0 (16) 13.76 (11) 18 (12) 22.8 (16) 4.8 (12)
ThreCont (14) 6.30 (9) 5.0 (9) 1.30 (9) 11.50 (11) 10.6 (15) 0.9 (6)
ThrePixeCont (15) 2.76 (5) 3.0 (1) 0.24 (1) 7.68 (10) 3.2 (6) 4.48 (11)
ImagePower (16) 6.58 (10) 5.8 (10) 0.78 (6) 5.96 (9) 2.2 (1) 3.76 (10)
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Fig. 7. Focus curves of the Entropy algorithm (13) for 10 image sets of
blood smears (top) and pap smears (bottom).

was employed for ranking the focusing algorithms, consisting
of two newly proposed dynamic measures, five previously
presented static criteria and one overall score. The variance
algorithm was found to provide the best overall performance
for both blood smear and pap smear samples, which is thus,
appropriate to choose for automated microscopic diagnosis of
blood and pap smear.
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