A Microfluidic Device With Optically-Controlled Electrodes for On-Demand Electrical Impedance Measurement of Targeted Single Cells

Na Liu, Ming Zhang, Tao Yue, Yuanyuan Liu, Yang Yang, and Yu Sun, Fellow, IEEE

Abstract—Electrical impedance measurement of a live cell is important for monitoring the cell's status. Label-free and non-invasive techniques for measuring the impedance of live cells have attracted much attention. Existing techniques are capable of measuring the impedance of entire cell populations and/or the instantaneous impedance of single cells, but an approach to track and monitor the electrical properties of single cells during their growth process has not yet been reported. This paper presents a microfluidic device integrated with optically-controlled electrodes (MOCE) for electrical impedance measurement of multiple individual cells over a time period. An equivalent circuit model to quantify the seal resistance, membrane capacitance, cytoplasmic resistance of single cells is proposed. In experiments, the adherence process of C2C12 myoblast cells was characterized by measuring individual cells' impedance data. During cell growth, the seal resistance R_{seal} increased gradually, while the membrane capacitance stayed at approximately 10^{-9} F and the cytoplasmic resistance stayed at approximately 10^9 Ω. The results demonstrate the feasibility and effectiveness of the MOCE-based method for on-demand single-cell electrical impedance measurement.

Index Terms—Optically controlled electrode, microfluidic device, electrical impedance, single cell analysis, cell adherence.

I. INTRODUCTION

THE electrical impedance of cells, as an important cellular property, is a useful label-free indicator of cell state and behaviour [1]. To understand the correlation between a cell's electrical properties and its states, techniques that are capable of monitoring the electrical impedance spectrum of single cells under different physiological conditions are demanded [2].

Several methods have been developed to characterize the electrical properties of cells, such as patch clamp, electrical cell substrate impedance sensing (ECIS), microfluidic impedance cytometry, and microelectrode array. Patch clamping has been used to study the processes of signal and synaptic transmission and to monitor intracellular and extracellular activity by suction of a cell with a micropipette under pulsed negative pressure [3], [4]. ECIS [1], [5], which measures the electrical impedance spectrum of cells through culturing cells on electrodes, is the most widely used method for investigating cellular events such as adhesion, proliferation, differentiation, and migration [6], [7]. It has been applied to cancer detection [8], [9], wound healing monitoring [10]–[12] and drug screen [13]–[15]. However, the traditional ECIS technique measures the entire cell population and does not target individual cells in the population. Microfluidic impedance cytometry takes advantage of hydromechanics as cells pass through a microchannel and records their electrical impedance spectrum individually [16]. This technique is suitable for detecting the instantaneous electrical impedance of a single cell but cannot track a specific cell over time. The combination of microfluidics and ECIS has also been demonstrated for the monitoring of a single cell [17]; however, it requires microchannels and microelectrodes to be fabricated with complicated structures. A device with prefabricated microelectrode arrays have also been used to measure the impedance spectrum of single cells by fabricating multiple microelectrodes and growing cells on the microelectrodes [18]. However, the tracking and measurement of only one cell is challenging with this technique.

This paper reports a microfluidic device with optically-controlled electrodes (MOCE) for on-demand monitoring of the electrical impedance of single cells. Virtual electrodes are dynamically generated on the substrate of the MOCE chip. Taking advantage of the virtual electrodes, the electrical impedance of any single cell on the substrate can be targeted and measured. The influence of parameters including channel height, light spot size and solution conductivity on impedance measurement have been discussed previously [19]. In this work, we propose a new circuit model to quantify the seal resistance, membrane capacitance, cytoplasmic resistance of single cells during 5-hour growth. The experimental results show that the seal resistance R_{seal} increased gradually, while the membrane capacitance and cytoplasmic resistance remained approximately unchanged during cell growth.

II. METHODS

A. Experimental Setup

The experimental system for on-demand measurement of the electrical impedance spectrum of single cells is shown in Fig. 1(a). The system is composed of seven modules, including an image acquisition module, a three-dimensional movable stage, an image projection system, a thermo plate, a micropump, an impedance analyser, and the MOCE device. As shown in Fig. 1(b)(c), the MOCE device consists of a polydimethylsiloxane (PDMS) layer with customised microfluidic channels for injecting cells and culture medium (Layer A), an upper ITO glass (Layer B), a double-sided adhesive tape (Layer C) patterned with a rectangular channel (length: 6 mm, width: 2 mm, height: 300 \(\mu \text{m} \)), and a photoconductive bottom substrate (Layer D), which is an ITO glass substrate coated with a hydrogenated amorphous silicon layer (a-Si:H) [20].

The PDMS channel layer was designed with two inlet holes (diameter: 0.8 mm) and two micro-channels (width: 0.8 mm, height: 0.5 mm) and was bonded with the upper ITO glass layer via oxygen plasma treatment. The microchannels on the PDMS layer were fabricated using the following steps. A PMMA template was first patterned by an engraving machine (Roland, EGX-350, Germany). The PDMS components were mixed with the curing agent at a ratio of 10:1 and were poured onto the PMMA template. The PDMS mixture was heated for 1.5 hour at 85°C and then peeled off for use. The upper ITO glass substrate was assembled with the bottom ITO glass substrate using the prefabricated double-sided adhesive. A PDMS film (length: 1 mm, W: 2 mm, H: 40 \(\mu \text{m} \)) was coated on both sides of the cell culture area to increase the impedance ratio of the light and dark hydrogenated amorphous silicon.

The image acquisition module includes a CCD camera (BASLER, ACA1300-30UC, Germany) attached to a microscope (Navitar, USA) for monitoring cell growth and for video acquisition. The image projection system is composed of a digital projector (Sony VPL-F600X, Japan), a condenser lens (Olympus, 50X, NA 0.50, WD 10.6 mm, Japan) and a computer used to generate and project an optical pattern onto the a-Si:H substrate. To measure the electrical impedance spectrum of single cells, a cell culture medium containing cells was injected into the micro-chamber between the upper ITO glass and the bottom a-Si:H substrate using a micropump (Fluigent, MFCS-EZ, France). The MOCE device was placed on a transparent thermal plate (Tokri Hit, Japan) used to maintain the appropriate temperature for cell culture. An impedance analyser (Keysight, E4990A, USA) was connected with the upper and bottom ITO substrates of the MOCE device to measure the electrical impedance of targeted cells on the a-Si:H substrate.

The a-Si:H film is a photoconductive layer whose conductivity increases from a dark conductivity of \(10^{-9} \text{ S/m} \) to a lighted conductivity of \(10^{-4} \text{ S/m} \) when illuminated by digitally
projected patterns [21]. These projected light spots on the a-Si:H substrate function as dynamic “virtual” electrodes. The measurement of the electrical impedance spectrum of a single cell was realised by keeping the projected spot on the target cell.

B. Cell Preparation

Alcohol and PBS solution were injected into the chip to clean the MOCE device before injecting the cells. Next, mouse myoblast C2C12 cells (10⁶ cells/mL) for technique testing were injected into the MOCE device and cultured in a mixture of high-glucose DMEM (HyClone) with 10% foetal bovine serum (Gibco) and 1% penicillin (Cellbio) at 37°C. HEPES buffer solution was added into this medium at a concentration of 20 mM/L to maintain PH value of the culture medium. A cell double-staining reagent (calcein-AM/PI) was used to indicate cell viability (with red for dead cells and green for living cells). The cell culture medium was injected into the MOCE device at a rate of 3.5 μl/min.

C. Equivalent Circuit Model

The equivalent circuit for calculating the electrical impedance of single cells using the MOCE device is shown in Fig. 1(d). Briefly, the equivalent circuit consists of four parts: (1) \(Z_{lg} \) and \(Z_{nol} \) represent the impedance of the a-Si:H substrate with light projection and without light projection, respectively; (2) \(Z_{cell} \) represents the impedance of measured single cells; (3) \(Z_{sol} \) represents the impedance of the cell culture medium; and (4) \(R_{seal} \) represents the sealing resistance, generated by the gap existing between the cell membrane and substrate [22]. The impedance of the interface between the culture medium and electrode substrate, referred to as \(Z_{ct} \) [19], was skipped in the present circuit model in order to extract the value of membrane capacitance, cytoplasmic resistance and seal resistance of single cells. \(Z_{ct} \) was neglected because \(Z_{ct} \) of the interface between the solution and a-Si:H without light projection was much lower than \(Z_{nol} \). \(Z_{ct} \) of the interface between the solution and a-Si:H with light projection was included in the seal resistance of the cell. The impedance of the a-Si:H substrate with light projection, \(Z_{lg} \) is modelled by the resistance \(R_{lg} \) and capacitance \(C_{lg} \) in parallel. The impedance of the a-Si:H substrate without light projection, \(Z_{nol} \) is modelled by the resistance \(R_{nol} \) and capacitance \(C_{nol} \) in parallel, as shown in Fig. 1(e). Single-cell impedance consists of cell membrane capacitance \(C_{cell} \) and cytoplasmic resistance \(R_{cell} \). The impedance of the cell culture medium is modelled as the electrically parallel combination of the medium resistance \(R_{sol} \) and the capacitance \(C_{sol} \). Due to the high conductivity of the cell culture medium, the capacitive reactance of the solution can be ignored [16]. The total impedance \((Z_{total}) \) of the MOCE device can be expressed as

\[
Z_{total} = \frac{Z_{cell} + (Z_{nol} + Z_{lg}) \times (R_{seal} + Z_{cell}) + Z_{sol}}{Z_{nol}Z_{cell} + Z_{nol}Z_{lg} (R_{seal} + Z_{cell})} + Z_{sol} \tag{1}
\]

where

\[
z_{cell} = \frac{R_{cell}}{1 + j\omega C_{cell} R_{cell}} \tag{2}
\]

\[
z_{nol} = \frac{R_{nol}}{1 + j\omega C_{nol} R_{nol}} \tag{3}
\]

\[
z_{lg} = \frac{R_{lg}}{1 + j\omega C_{lg} R_{lg}} \tag{4}
\]

\[
z_{sol} = \frac{R_{sol}}{1 + j\omega C_{sol} R_{sol}} \tag{5}
\]

The sealing resistance \(R_{seal} \) can be expressed as [23]

\[
R_{seal} = \frac{\rho_s}{d} \delta \tag{6}
\]

where \(\rho_s \) represents the resistivity of the solution, \(d \) represents the gap between the cell and the electrode, and \(\delta \) represents the coincidence coefficient between the cell area and the electrode surface. \(R_{seal} \) is often used to indicate the adhesion degree between cells and their attached substrate.

D. Data Analysis

The parameters of the equivalent circuit were determined by a two-step procedure. First, the electrical impedance spectrum of the MOCE device without cells present was analysed using a reduced equivalent circuit by omitting the cell membrane capacitance \(C_{cell} \), the cell cytoplasmic resistance \(R_{cell} \), and any seal resistance \(R_{seal} \). Afterwards, the electrical impedance spectrum of the MOCE device with cells was analysed with the entire equivalent circuit. The parameters for the electrical properties of single cells were determined by fitting the entire equivalent circuit with the ZView software (Scribner Associates, USA).

III. RESULTS AND DISCUSSION

In the experiment, the conductivity of the culture medium was 1.67 S/m. The thickness of the chamber was 300 μm. A light spot with a constant diameter was applied to generate a virtual electrode on a-Si:H substrate. Fig. 2(a) shows the light spot projected onto an adhered cell. To reduce the influence of the uneven density of hydrogenated amorphous silicon, the light spot was also projected onto a region without cells that was near the target adhered cell, as shown in Fig. 2(b). Fig. 2(c)-(d) shows the impedance of four different regions with single cell, and one region with no cell. The impedance spectrum when light spot was projected onto no cells was referred as Impedance \(nocol \). The impedance when light spot was projected onto a single C2C12 cell was referred as Impedance \(cell \). The frequency range of the measured impedance spectra was from 20 Hz to 10 MHz. As shown, all impedance magnitude decreased with increasing frequency.

The capacitive reactance decreased with increasing frequency, resulting in a decrease in the overall impedance. At low frequencies below 1 kHz, the value of Impedance \(cell \) was slightly larger than the value of Impedance \(nocol \), due to the cytoplasmic resistance \(R_{cell} \) and the seal resistance \(R_{seal} \). However, at higher frequencies larger than 100 kHz, the value of Impedance \(cell \) became much lower, because the
impedance of the solution and of a single cell both decrease as frequency increase. In the high frequency case, the impedance of the solution and the cell membrane capacitance were the main factors affecting the overall impedance. Due to the difference between the impedance spectrum of Impedance_cell and Impedance_no.cell, the electrical properties of single C2C12 cells were determined.

The electrical properties of a cell were extracted by fitting the experimentally recorded impedance spectrum with the equivalent circuit model. Take the condition of one hour after injecting the cells into the MOCE device as an example for illustration. Fig. 2(e) shows the experimental and fitting results for the impedance spectrum of Impedance_no.cell. Fig. 2(f) shows the experimental and fitting results for the impedance spectrum of Impedance_cell. The values of R_{lg}, C_{lg}, R_{sol} and C_{sol} were calculated based on the electrical properties of a-Si:H. Combined with these values, the impedance of the culture solution was determined through fitting the impedance spectrum of Impedance_no.cell. From the impedance of the culture medium and the a-Si:H, the cell membrane capacitance C_{cell}, cytoplasmic resistance R_{cell} and the seal resistance R_{seal} were extracted by fitting the impedance spectrum Impedance_cell. For adhered C2C12 cells 5 hours after injection into the device, the value of membrane capacitance C_{cell} was determined to be $1.59 \pm 0.03 \times 10^{-9}$ F, the value of cytoplasmic resistance R_{cell} was $3.12 \pm 0.23 \times 10^{3}$ MΩ and the value of the seal resistance R_{seal} was about 1.08 ± 0.15 MΩ.

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>R_{seal} (MΩ)</th>
<th>C_{cell} (F)</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2C12</td>
<td>~1.08</td>
<td>1.59 $\times 10^{-9}$</td>
<td>MOCE</td>
</tr>
<tr>
<td>NIH3T3</td>
<td>~1.69</td>
<td>--</td>
<td>ECIS [24]</td>
</tr>
<tr>
<td>SkMel28</td>
<td>~1.00</td>
<td>~1.58 $\times 10^{-12}$</td>
<td>PET [25]</td>
</tr>
<tr>
<td>HEK293</td>
<td>~1.31</td>
<td>~0.21 $\times 10^{-13}$</td>
<td>ECIS-PET [26]</td>
</tr>
<tr>
<td>786-O</td>
<td>--</td>
<td>~4.59 $\times 10^{-11}$</td>
<td>MIC [27]</td>
</tr>
<tr>
<td>T2</td>
<td>--</td>
<td>~5.66 $\times 10^{-11}$</td>
<td>MIC [27]</td>
</tr>
<tr>
<td>Cardiomyocyte</td>
<td>--</td>
<td>~1.23 $\times 10^{-10}$</td>
<td>Patch-clamp [28]</td>
</tr>
</tbody>
</table>

Note: Microfluidic device integrated with optically-controlled electrodes (MOCE), Electrical Cell substrate Impedance Sensing (ECIS), Field-Effect Transistors (PET) and Microfluidic Impedance Cytometry (MIC)

Table I compares the quantified seal resistance and membrane capacitance of single cells measured by the MOCE and other techniques. As shown in Table I, the membrane capacitance values of different cell types quantified by different techniques vary, and the seal resistance values all fall within the same order of magnitude.

When cells grow on the substrate, cells take advantage of proteins (e.g., fibronectin) expressed on the cell surface to form adhesion with the substrate. These proteins also regulate the cytoskeleton through cellular signal transduction to spread the cell body [29]. The states of cell adhesion and spreading are important characteristics of cell growth.

Here, the cell adhesion state was characterized by monitoring the change in the seal resistance R_{seal} of the cell. Fig. 3 shows the state of the C2C12 cells injected into the MOCE device after 0.5, 1, 3 and 5 hours. As shown in Fig. 3(a), the C2C12 cells were largely spherical when they were initially injected into the MOCE device. The shapes of
the cells became flat after 1 hour, indicating that the cells started to attach to the substrate. After 5 hours, the cells were fully spreading on the substrate of the MOCE device, as pointed out by the white arrows. Fig. 3(b) shows changes in the sealing resistance R_{seal} of the single cells after 0.5, 1, 3 and 5 hours. The sealing resistance R_{seal} gradually increased from $0.37 \pm 0.04 \, \Omega$ at 0.5 h to $0.74 \pm 0.16 \, \Omega$ at 1.0 h to $0.86 \pm 0.13 \, \Omega$ at 3 h to $1.09 \pm 0.15 \, \Omega$ at 5 h as the cells adhered and spread on the MOCE device substrate, while the cell capacitance remained at approximately 10^{-9} F and the cytoplasmic resistance R_{cell} remained at a level of $10^{9} \, \Omega$. The R_{seal} of single cells is an intrinsic electrical characteristic depending on the gap and the coincidence coefficient between the cell area and the electrode surface. Higher values for the R_{seal} represent tighter contact between the cell and the substrate [25], [26], [30]. Additionally, the cells after 5-hr measurements were stained using Calcein-AM/PI dye for cell viability analysis and the staining results suggested that the cells after 5-hr measurements were still viable.

IV. CONCLUSION

This paper reported a MOCE chip for characterising the electrical impedance of single cells in real time. An equivalent circuit model for extracting the impedance of single cells is presented. A cell within a population can be targeted on demand. The electrical impedance spectra of a single cell was monitored during its growth. The dynamic adherence behaviour of single C2C12 myoblast cells were revealed by the changes in seal resistance R_{seal} by fitting impedance spectra with the equivalent circuit for each time point. The electrical properties of cell including seal resistance, membrane capacitance and cytoplasmatic resistance are important parameters indicating cell attachment, apoptosis and other behaviors, which have potential applications in drug screening [24], [31]. Compared with traditional ECIS devices, the MOCE method can obtain the impedance of targeted single cells due to the flexible optically-controlled “virtual” electrodes. The flexibility of the MOCE method makes it suitable for single-cell monitoring and analysis. Next step research will involve the testing of multiple types of cells as well as their drug responses.

REFERENCES

Wen J. Li (Fellow, IEEE) received the B.S. and M.S. degrees in aerospace engineering from the University of Southern California (USC), in 1987 and 1989, respectively, and the Ph.D. degree in aerospace engineering from the University of California at Los Angeles (UCLA), Los Angeles, CA, USA, in 1997. From 1997 to 2011, he was with the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong. His industrial experience includes the Aerospace Corporation, El Segundo, CA, USA, the NASA Jet Propulsion Laboratory, Pasadena, CA, USA, and Silicon Microstructures, Inc., Fremont, CA, USA. He is currently a Chair Professor with the Department of Mechanical and Biomedical Engineering, City University of Hong Kong. His current research interests include intelligent cyber physical sensors, super-resolution microscopy, and nanoscale sensing and manipulation. He served as the President of the IEEE Nanotechnology Council, in 2016 and 2017.

Yu Sun (Fellow, IEEE) received the bachelor’s degree from the Dalian University of Technology, Dalian, China, in 1996, the first M.S. degree from the Institute of Automation, Chinese Academy of Sciences, Beijing, China, in 1999, and the second M.S. degree in electrical engineering and the Ph.D. degree in mechanical engineering and the Department of Electrical and Computer Engineering, a McLean Senior Faculty Fellow, and the Canada Research Chair of Micro and Nano Engineering Systems (Tier I). As the Faculty Director, he directed the University Nanofabrication Centre from 2012 to 2013. He was a recipient of the Alumni Achievement Award in 2015 from the Dalian University of Technology. In 2014, he was elected into the Canadian Academy of Engineering.