A microdevice platform for characterizing the effect of mechanical strain magnitudes on the maturation of iPSC-Cardiomyocytes

Wenkun Dou a,1, Li Wang a,c,1, Manpreet Malhi b,d,1, Hailjiao Liu a,e, Qili Zhao a, Julia Plakhotnik b,d, Zhensong Xu a, Zongjie Huang b, Craig A. Simmons b,d,e,*, Jason T. Maynes b,d,g,**, Yu Sun a,e,i,h,***, Yu Sun

a Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
b Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5G 1X8, Canada
c School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
d Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
e Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, M5G 1X8, Canada
f Department of Computer Science, University of Toronto, M5T 3A1, Canada

ABSTRACT

The use of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as an in vitro model of the heart is limited by their structurally and functionally immature phenotypes. During heart development, mechanical stimuli from in vivo microenvironments are known to regulate cardiomyocyte gene expression and maturation. Accordingly, protocols for culturing iPSC-CMs have recently incorporated mechanical or electrical stimulation to induce cellular maturation in vitro; however, the response of iPSC-CMs to different mechanical strain magnitudes is unknown, and existing techniques lack the capability to dynamically measure changes to iPSC-CM contractility in situ as maturation progresses. We developed a microdevice platform which applies cyclical strains of varying magnitudes (5%, 10%, 15% and 20%) to a monolayer of iPSC-CMs, coincidentally measuring contractile stress during mechanical stimulation using fluorescent nanobeads embedded in the microdevice’s suspended membrane. Cyclic strain was found to induce circumferential cell alignment on the actuated membranes. In situ contractility measurements revealed that cyclic stimulation gradually increased cardiomyocyte contractility during a 10-day culture period. The contractile stress of iPSC-CM monolayers was found to increase with a higher strain magnitude and plateaued at 15% strain. Cardiomyocyte contractility positively correlated with the elongation of sarcomeres and an increased expression of β-myosin heavy chain (MYH7) in a strain magnitude-dependent manner, illustrating how mechanical stress can be optimized for the phenotypic and proteomic maturation of the cells. iPSC-CMs with improved maturity have the potential to create a more accurate heart model in vitro for applications in disease modeling and therapeutic discovery.

1. Introduction

Cardiovascular diseases are a major global health burden and contribute to over 30% of deaths worldwide (Benjamin et al., 2019). The elucidation of disease pathobiology and the discovery of new treatments is limited by the difficulty of pre-clinical modeling of the heart. Human pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) represent an important advancement for disease modeling, therapeutic discovery, and drug toxicity testing, providing a functionally active, renewable cell source utilizing the human proteome (Rowe and Daley, 2019). However,
compared with adult human cardiomyocytes, iPSC-CMs exhibit immature structural, metabolic and electrophysiological properties (Feric and Radisic, 2016). The immaturity of iPSC-CMs limits their utility as a research model, as well as their clinical application for regenerative therapy (Liu et al., 2018; Romagnuolo et al., 2019).

Within the heart, mechanical signals exerted by in vivo microenvironments play a critical role in (re)modelling of the myocardium, pre- and post-natally (Lindsey et al., 2014). The adaptive or maladaptive remodeling processes of human cardiomyocytes depend on local mechanical microenvironment in vivo (Saucerman et al., 2019). During heart development, cardiomyocytes sense mechanical stress from their microenvironment through mechanosensitive pathways, which regulate gene expression and mediate the maturation of cardiac structures and physiological functions (Feric and Radisic, 2016; Guo and Pu, 2020). Studies on cardiac development in zebrafish embryos have demonstrated the importance of mechanotransduction by showing that a lack of mechanical loading in vivo impedes heart development and causes abnormal formation of the heart chambers (Hove et al., 2003). Conversely, excess mechanical loading can induce maladaptive remodeling, leading to impaired heart function and cardiac diseases, such as hypertrophy and fibrosis (Saucerman et al., 2019).

Several culture techniques and tools, such as bioreactors, have incorporated mechanical stimulation to recapitulate the microenvironment of the myocardium and induce iPSC-CM maturation in vitro (Mihic et al., 2014; Ruan et al., 2016; Zhang et al., 2017). Either static (Ruan et al., 2016; Zhang et al., 2017) or dynamic (Banerjee et al., 2015; Mihic et al., 2014) mechanical stimulation of cardiomyocytes has promoted phenotypes consistent with a higher degree of cellular maturation, including increased cell size (Mihic et al., 2014), greater sarcomeric alignment (Zhang et al., 2017), enhanced expression of gap junction proteins (e.g. connexin-43) (Salameh et al., 2010), and upregulated transcription of genes associated with myofilaments and cardiac ion channels (Mihic et al., 2014). However, the mechanical loading conditions utilized across existing studies are inconsistent (Banerjee et al., 2015; Mihic et al., 2014; Miklas et al., 2014; Ruan et al., 2016), and the specific effects of different mechanical strain magnitudes on cardiomyocyte maturation remains unknown. Furthermore, many of these studies employed cell culturing methods which lacked the capability of effectively measuring cardiomyocyte maturation (and associated changes to contractility) in situ. Thus, assessment of contractility was either omitted (Feric and Radisic, 2016), or conducted as an end-point measurement by transferring tissue onto a separate platform (Ruan et al., 2016), negating the ability to optimize protocols to avoid under (lack of maturation)- or over (creating a disease phenotype)-mechanically stimulating the cells.

Here we report a microdevice array that is capable of applying dynamic mechanical stimulation on iPSC-CMs and quantitatively monitoring the evolution of cell contractility in response to different mechanical strain magnitudes in situ. Pneumatic pressure was applied to bulge the suspended membranes in the microdevice array for dynamic stimulation of iPSC-CMs with different strain magnitudes (0, 5%, 10%, 15%, and 20%). Fluorescent nanobeads were embedded in the suspended membrane for measuring contractility of iPSC-CMs cultured on the membrane via traction force microscopy (TFM). Our results reveal that the maturation of iPSC-CMs was enhanced by mechanical stimulation in a strain magnitude-dependent manner. The contractile stress of the iPSC-CMs increased with a higher strain magnitude and plateaued at 15% cyclic strain. Increasing monolayer contractility corresponded to an enhanced cell and sarcomeric alignment, improved sarcomeric structure, and a higher expression of β-myosin heavy chain (MYH7), illustrating how optimal mechanical strain conditions facilitate a consistent maturation of the cardiomyocyte phenotype and proteome.

2. Material and methods

2.1. Fabrication of microdevice arrays

Each microdevice array consists of three separately contained assay constructs on a single glass slide, each of these possessing a suspended PDMS membrane covered by a softer PDMS film embedded with fluorescent nanobeads. Detailed fabrication steps are provided in Supplementary Fig. S1. In brief, PDMS was mixed at a 10:1 ratio with curing agent, poured into an aluminum mold, and baked at 80 °C for 4 h. The baked PDMS structure was peeled off, treated by plasma and bonded to the glass slide to form the suspended membrane. To measure the contractile stress of iPSC-CM monolayers cultured on the device, softer PDMS (60:1 as the ratio of base polymer and curing agent) was mixed with fluorescent beads (0.2 μm in diameter; fluorescence: λem~575 nm, λex~610 nm; Sigma) and spin-coated at 2000 rpm for 1 min to form a thin film on the top surface of the suspended membrane (see fluorescence image in Fig. 1A). The microdevice array was then oven-baked overnight at 80 °C. Custom-made glass cylinders (8 mm in diameter and 10 mm in height for the glass wall) were bonded to each individual device to form independent cell culture chambers (Fig. S1).

2.2. Device calibration and analysis

For device calibration, a pressure control system (Flow EZ, Flui gent) was used to provide pneumatic pressure into the underlying microchannels through a plastic tubing to bulge the suspended membranes. Supplementary Video S1 shows the side-view of a suspended membrane under different actuation pressures. The deflection magnitude Δh at the top center of the suspended membrane, including the softer PDMS film, was analyzed in ImageJ (1.8, National institutes of Health, USA). Finite element analysis (FEA) of membrane strain profiles and vertical displacements was conducted in COMSOL Multiphysics. The device dimensions, material properties of the suspended membrane, and the applied pneumatic pressure were used as input for FEA. PDMS was modeled as an isotropic elastic material with a Poisson’s ratio of 0.49. Atomic force microscopy (AFM) indentation was performed (Fig. S2) to measure the elastic modulus value of both the suspended PDMS membrane (1036.1 ± 5.54 kPa, n = 3 independent measurements) and the softer top PDMS film (31.7 ± 1.52 kPa, n = 3 independent measurements). Loop function in COMSOL was employed to calculate Δh and the strain profile under different pneumatic pressures.

Supplementary data related to this article can be found at https://doi.org/10.1016/j.bios.2020.112875.

2.3. iPSC-CMs culture

A monolayer of iPSC-CMs (iCell2®, Cellular Dynamics International) was independently cultured on each of the three membrane constructs per microdevice array, according to the previously outlined protocol (Dou et al., 2020; Wang et al., 2020). Prior to culturing, all devices were sterilized and activated by ultraviolet exposure for 30 min. Device membranes were then coated with an ECM protein mixture, including fibronectin (10 μg/mL) (356068, Corning), gelatin (0.1% w/v) (G1890, Sigma) and laminin (10 μg/mL) (CC095, Sigma), and incubated at 37 °C overnight. Cardiomyocytes were thawed in plating medium (Cellular Dynamics International) and plated at a density of 1.5 × 10^6 cells/cm². Four hours post-plating, the plating medium was replaced with maintenance medium (Cellular Dynamics International). Cell monolayers were cultured in an incubator (37 °C, 5% CO2) for 10 days. Culture medium (200 μL in volume) was replaced every second day.

2.4. Quantification of cell contractility

The contractile stress of each iPSC-CM monolayer was quantified using traction force microscopy (TFM) (Ribeiro et al., 2017; Tseng et al.,
Brightfield images of cell contraction and the corresponding movement of fluorescent beads were captured by an Axio Observer microscope (Zeiss, Germany) under controlled temperature and CO₂ movement of fluorescent beads were captured by an Axio Observer concentration (37°C, 5% CO₂). Videos were recorded at the center of each membrane, under a 20X objective, at 30 frames per second. For each contraction cycle, fluorescent images at the maximal contraction state were compared with the corresponding images at the maximal relaxation state to calculate the displacement field, using standard image cross-correlation techniques. Based on the displacement field and the measured substrate elastic modulus, contraction magnitudes and distributions of iPSC-CMs in the monolayer were calculated using Fourier-Transform Traction Cytometry (FTTC), averaged throughout the imaged area (see Supplementary Materials for details).

2.5. Immunofluorescence staining and sarcomere orientation measurement

Cardiomyocytes were stained for α-actinin and β-myosin heavy chain (MYH7) to evaluate the effect of mechanical stimulation on cell maturation. After day ten, cells were fixed with 4% paraformaldehyde and permeabilized with 0.1% Triton X-100. Following permeabilization, the cells were blocked with antibody diluent solution (5% goat serum in TBST) for 1 h, and then co-stained with mouse anti-α-actinin (1:500, ab9465, Abcam), and rabbit anti-MYH7 (1:100, HPA001239, Sigma) diluted in TBST, overnight at 4°C. Cells were washed three times with TBST wash buffer (0.01% Triton X-100 in TBS) and incubated with Alexa Fluor® 594-anti-rabbit and Alexa Fluor® 594-anti-mouse secondary antibodies (Cell Signaling Technology) at 1:1000 dilution in TBST with Hoechst 33342 solution (Thermo Scientific) for 1 h at room temperature. The cells were washed again. Fluorescence images were captured on a Quorum spinning disk confocal microscope and analyzed in ImageJ. Sarcomere orientation was measured as the relative angle between the sarcomere elongation direction and the radial direction at the specific location of the suspended membrane. A degree of 0° denotes that sarcomere aligns along the radial direction and 90° denotes sarcomere aligns along the circumferential direction. Data were analyzed by image processing using OrientationJ plugin for ImageJ (Paparelli et al., 2016).

2.6. Statistical analysis

OriginPro-2018 software was used for statistical analysis. For differential analysis, Student’s t-test was performed for comparison between two groups, and one-way ANOVA with a Tukey post hoc test was used to analyze significance between multiple groups. The statistical significance was accepted at the p-value < 0.05 (*p < 0.05 and **p < 0.01 versus control; #p < 0.05 and ##p < 0.01 for comparisons between groups under mechanical stimulation, ns = not significant). Data were expressed as mean values with the standard error of the mean (mean ± SEM).

3. Results

3.1. Characterisation of mechanical strain microdevice array

The described microdevice arrays were adapted from our previous platforms (Liu et al., 2016; Wang et al., 2018) to provide cyclic mechanical stimulation to iPSC-CMs and quantify the development of cell contractility under different strain magnitudes. Each array contained three suspended circular membranes, each 6.35 mm in diameter and 250 μm in thickness, spaced 15 mm center to center (Fig. 1A&B). The softer PDMS film had a thickness of 42.4 ± 0.58 μm as measured using confocal Z-stack images (Fig. S2A), with a Young’s modulus of 31.7 ± 1.52 kPa quantified by AFM indentation (n = 3 independent
measurements) (Fig. S2B&C). iPSC-CMs formed a spontaneously beating monolayer on the top membrane surface (Fig. 1C). Cell contraction induced periodic displacements of fluorescent beads embedded in the membrane (Fig. 1D&E), which were used for contractile stress quantification (Fig. 1F; Supplementary Video S2).

Supplementary data related to this article can be found at https://doi.org/10.1016/j.bios.2020.112875.

We calibrated the relationship between membrane deflection magnitude, strain magnitude and applied actuation pressure. Different pneumatic pressures were applied to bulge the device membrane, and the corresponding vertical displacements (Δh) at the center of the membrane were experimentally measured (Fig. 2A&B). In addition, FEA was used to calculate Δh and the equivalent strain profile on the top membrane surface under different actuation pressures. As shown in Fig. 2B, FEA simulation results matched the experimental data (repeated devices, n = 3) with an average error of 2.9%.

The relationship between maximal equivalent strain and applied pressure was calculated by FEA (Fig. 2C), which was used to determine the required pneumatic pressure (1.54 kPa, 4.10 kPa, 8.46 kPa, and 14.79 kPa) to produce the desired strain magnitudes (5%, 10%, 15%, and 20%). The overall experimental setup is shown in Fig. S3 iPSC-CMs adhered to the membrane surface were mechanically stimulated by the device membrane. Fig. S4 shows the equivalent strain distribution on the top membrane surface under each loading condition. The equivalent strain magnitude remains relatively constant in the center area of the membrane and decreases when approaching the membrane boundary (Fig. 2D). To minimize the influence of strain variation across the membrane surface, a region of interest (ROI) was set as the circular area within 1 mm radial distance from the membrane center, and only cells in the ROI were analyzed. The defined ROI minimized the strain variation to be less than 0.8% for all the loading conditions. In addition, a fatigue test was performed to evaluate the potential structural degradation of the device membrane during cyclic bulging. After 10 days (8.6 × 10⁵ cycles) of dynamic stimulation under 15 kPa, neither the Young’s modulus nor the maximum displacement (Δh) of the membrane showed a significant change (Fig. 2E), which validated the stability of the devices for mechanical stimulation over a prolonged period.

3.2. Mechanical stimulation increases iPSC-CM contractility

After seeding, iPSC-CMs were cultured statically for 48 h to allow for membrane adherence and the development of a spontaneously beating monolayer (coordinated monolayer contraction). Mechanical stimulation of each cell monolayer was performed by applying cyclic strain (1 Hz) at different strain magnitudes (5%, 10%, 15% and 20%) from day 2 to day 10. For each strain magnitude, three cell monolayers were stimulated as repeated experiments. Dynamic mechanical stimulations were paused for 30 mins at the end of each culture day for the measurement of monolayer contractions in a live imaging system (Zeiss, Germany). The contractile stress of each iPSC-CM monolayer was quantified by measuring the displacements of the fluorescent beads induced by cell contraction (Supplementary Video S2).

The observed changes to each monolayer’s contractile stress from day 2 to day 10 was quantified, as shown in Fig. 3A. For all loading conditions, the contractile stress of the iPSC-CM monolayers increased significantly from day 2 to day 10, with the exception of the 5% strain condition, which showed a significant decrease on day 10. The contractile stress was quantified by measuring the displacements of the fluorescent beads induced by cell contraction (Supplementary Video S2).
conditions (0%, 5%, 10%, 15% and 20% mechanical strain), a time
dependent increase in the contractility of iPSC-CM monolayers was
seen. Cells initiated beating on day 2 and displayed synchronous
contraction thereafter. When compared to the control group (i.e., 0%
strain), mechanical stimulation improved the contractility of the iPSC-
CMs after day 3 (Fig. 3A). For each loading condition, cell contrac-
tility increased nonlinearly during the 10-day period. For instance, for
the group loaded with 10% strain, contractile stress exhibited a sub-
stantial increase from day 2 to day 6 (308.76 ± 20.47 Pa to 1292.85 ±
46.3 Pa, n = 3 monolayers), and then slowly increased from day 6 to day
10 (1292.85 ± 46.3 Pa to 1409.85 ± 64.87 Pa, n = 3 monolayers).

Fig. 3B summarizes the contractile stress of all the iPSC-CM mono-
layers at day 10, for each strain magnitude of loading. Compared with
the control group (0% strain), contractile stress significantly increased
from 916.12 ± 65.11 Pa to 1244.95 ± 104.41 Pa for 5% strain, to
1409.85 ± 64.87 Pa for 10% strain, and to 1661.68 ± 108.02 Pa for 15%
strain. The contractile stress plateaued at the 15% strain magnitude, and
no significant difference was observed between the 15%-strain group
and the 20%-strain group (1713.48 ± 91.03 Pa, p = 0.94, n = 3
monolayers for each loading condition). Even up to 20% strain, no
downward trend was observed.

3.3. Sarcomere and MYH7 expression enhancement under mechanical stimulation

To investigate whether the observed increase in cardiomyocyte
contraction correlated to an increase in cell maturation, we probed for
two key cardiomyocyte proteins (α-actinin and MYH7) by immuno-
fluorescence at the end of the 10-day culture period. α-actinin was used to
quantify sarcomeric structure and alignment, where MYH7 (β-myosin
heavy chain) was used to assess iPSC-CM maturity as the isoform pre-
dominantly expressed in adult human hearts (Zhu et al., 2014).

We found that mechanical stimulation applied to iPSC-CMs by the
bulged membrane promoted overall intercellular alignment, as deter-
mined by α-actinin staining. Confocal images of iPSC-CMs stimulated
with different strain magnitudes were captured at a 1 mm radial distance
away from the membrane center for cell alignment analysis. Sarcomere
orientation (Fig. 4A) depends on the strain magnitude and exhibited
gradual change from random directions to the direction perpendicular
to the radial direction (circumferential direction) with the increase of
strain magnitudes. It suggested that a larger cyclic strain magnitude has
stronger effects on inducing cardiomyocyte sarcomere alignment. The
immunohistochemistry images (Fig. 4B and C) in both control group and
20% strain group clearly indicated that cells reoriented along the
circumference of the membrane bulge under mechanical stimulation.
Comparing with the sarcomere orientations at the membrane center
(Fig. S5), the “strain-avoidance” cell alignment along the circumferen-
tial direction was supposed to be determined by the magnitude differ-
eence of applied strain in radial and circumferential directions (Fig. S6)
at the targeted imaging positions.

Fig. 5A shows that mechanical stimulation shifted sarcomere struc-
tures from random patterns (control group) to striate and parallel pat-
tterns (mechanically stimulated group). Sarcomere length, summarized
in Fig. 5B, was determined by measuring the distance between neigh-
boring α-actinin bands. Relative to the control group, the cardiomyocyte
populations under cyclic strain displayed an increase in the sarcomere
length (control: 1.746 ± 0.196 μm; 5% strain: 1.806 ± 0.030 μm; 10%
strain: 1.890 ± 0.027 μm; 15% strain: 1.908 ± 0.033 μm; 20% strain:
1.911 ± 0.030 μm, n = 35 sarcomeres for each condition). Compared to
the loading strain of 10%, no significant improvement of sarcomere
length was observed with a further increase of strain magnitude. Elon-
gation of sarcomere length induced by mechanical stimulation follows
the Frank-Starling Law (Delicce et al., 2019), enabling cells to produce a
larger sliding distance between the actin and myosin filaments during
contraction, and hence increase cell contractility.

We also evaluated the expression level of MYH7 by normalizing the
fluorescence intensity to that of the control group, as shown in
Fig. 5A&C. In contrast to the plateaued increase in contractility and
sarcomere length, MYH7 expression was upregulated in a strain-
dependent manner at all tested strain magnitudes. We attempted to
further increase the loading magnitude to 25% and evaluate whether
MYH7 expression increased further. However, the iPSC-CM monolayers
partially detached from the device membrane and formed separated
clusters under these high mechanical strain conditions (Fig. S7).

4. Discussion

The generation of functional human cardiomyocytes through
induced pluripotent stem cells allows for more accurate disease
modeling to study pathology and facilitate therapeutic discovery.
However, the immature (fetal-like) phenotype of these cells has limited
their translational potential. Cyclic mechanical loading experienced by
developing hearts is widely recognized to be indispensable for car-
diomyocyte maturation and contractility (Guo and Pu, 2020). Accord-
ingly, several platforms have attempted to integrate different forms of
mechanical or electromechanical stimulation to study mechano-
transduction in iPSC-CMs and promote cell maturation in vitro (Carson
et al., 2016; Marsano et al., 2015; Nunes et al., 2013; Tiburcy et al.,
2017). In the present study, we developed a microdevice platform to
apply cyclic strain to a monolayer of iPSC-CMs to more closely emulate
the developmental environment and to allow for tunable changes to cell
maturation conditions. Our results quantitatively illustrate how
different mechanical strain magnitudes regulate the contractile stress and maturity of iPSC-CMs, in terms of cell alignment, sarcomere length, and MYH7 expression.

Compared to mechanically active bioreactors (Dhein et al., 2014; Shao et al., 2013), microdevice platforms for mechanical stimulation of cultured cells have lower complexity in setup and increased throughput (Marsano et al., 2015; Parsa et al., 2017). However, due to the difficulty of integrating on-chip sensing components, most existing microdevice platforms only allow end-point analyses of cell/tissue functions. Our microdevice arrays are capable of dynamic mechanical stimulation, in

Fig. 4. Mechanical stimulation enhances the alignment of iPSC-CMs. (A) Distribution of sarcomere orientations under different mechanical loading conditions (control, 5%, 10%, 15% and 20%). Sarcomere orientations relative to the membrane radial direction were measured at areas with ~1 mm radial distance from the membrane center. (B and C) Confocal images of iPSC-CMs under (B) 0 strain and (C) 20% cyclic strain conditions and captured at areas with ~1 mm radial distance from the membrane center (red dot). Cells illustrate better intra- and inter-cellular alignment of sarcomeres (α-actinin, green). Cyclic strain induces circumferential cell alignment on the actuated membranes. Scale bar: 25 μm. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
higher mechanical strain magnitudes, potential solutions include progressively increasing stimulation intensity over time, optimizing the membrane coating matrix, and testing other surface modification methods (Beal et al., 2012). However, it may also be that physical cell stretching was maximized at 20%, and de-adherence at further strains was related to the loss of cell:cell junctions. Fatigue testing verified there was no significant variation of membrane stiffness and deflection magnitude throughout the experiment period (Fig. 2E), indicating the operational stability of the microdevices for at least ten days.

Contraction of cardiomyocytes occurs through the conversion of electrical signals to a mechanical response, in a process termed “excitation-contraction coupling” (Bers, 2002). The propagation of the action potential through cell membranes and gap junctions initiates membrane depolarization and triggers the shortening of sarcomeres through crossbridge cycling between actin and myosin filaments. We performed in situ monitoring of the dynamic changes to iPSC-CM contractility under different strain magnitudes, quantified over a 10-day culture period. For each loading condition, a time-dependent increase of contractile stress was observed; with rapid increase from day 3 to day 6, followed by moderate increase after day 6 (Fig. 3A). At the time of plating, iPSC-CMs exhibited low cell area, sparse sarcomeres, and minimal intercellular contact. From day 2 to day 6, rapid cell spreading occurred, corresponding to increased cell area, sarcomere development and cell-cell contact. Intercellular contact between adjacent cardiomyocytes facilitated electrical communication, as evidenced by synchronous cell beating and increased contractility. Following day 6, few gross morphological changes were observed for the cells. Cell contractility was further improved by performing mechanical loading through membrane bulging, up to a strain magnitude of 15% (Fig. 3B). Similarly, sarcomere length increased and plateaued at the strain magnitude of 15% (Fig. 5B); however, the expression of MYH7 continued to increase to the highest strain magnitude tested (20%) (Fig. 5C).

Fig. 5. Changes of contraction-related biomarkers (sarcomere length and MYH7 expression) with the increase of mechanical loading. (A) Representative confocal images of iPSC-CM monolayers under defined strain conditions (day 10). Cells are stained with α-actinin (green), myosin heavy chain-beta (MYH7, red) and nuclei (cyan). (B) Sarcomere length and (C) protein expression of MYH7 were quantified from the immunohistochemistry images. Sarcomere length was measured as the distance between successive α-actinin striations. Measured sarcomeres n = 35 for each condition. The expression levels of MYH7 was calculated by normalizing the fluorescence intensity to the control group. Repeated monolayers n = 3, *p < 0.05 and **p < 0.01 versus control; *p < 0.05 and **p < 0.01 for comparisons between groups under mechanical stimulation. Scale bar: 25 μm. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
sarcomere comprises multiple structural components, including thin filaments (actin), thick filaments (β-myosin heavy chain, myosin binding protein C), titin filaments (titin), Z-disks (α-actinin), and M-lines (myomesin) (Guo and Pu, 2020). We speculate that certain sarcomeric components may respond differently to an increasing magnitude of mechanical stimulation, as multiple mechanotransduction pathways are known to influence cardiomyocyte protein expression, regulation and function (i.e., integrin-mediated force sensing through focal adhesions, transcription regulation through LINC/laminin proteins, among others (Schumacher et al., 2020; Stewart et al., 2019)). Ultrastructural organization of sarcomeres, in terms of length and alignment, could be rapidly modified under lower mechanical loading conditions, while the expression and synthesis of sarcomeric protein isoforms (e.g., MYH7) may require longer durations of strain and/or higher strain magnitudes.

Mechanical strain has been reported to cause reorientation of different cell types along the direction that is perpendicular to the principle strain in vitro (Kamble et al., 2018; Qi et al., 2015; Salameh et al., 2018). For cardiomyocytes, the “strain-avoidance” alignment behavior is regulated through mechanotransduction to help cells minimize the perturbation of applied strain on cell contraction and cell adhesion (Maurretti et al., 2016; Salameh et al., 2010). Three orthogonal strain components (radial, circumferential, and longitudinal) exist in the human heart in vivo, and the global mean systolic strain of human heart’s left ventricular wall in the radial direction (38.8 ± 7.3%) is approximately two times larger than that in the circumferential direction (18.5 ± 2.0%) (Liu et al., 2017). Meanwhile, the muscle fibers in the heart generally show circumferential alignment in myocardium and encircle the heart chambers with helical angles (Doste et al., 2019; Rijken et al., 1999). The “strain-avoidance” response of cardiomyocyte alignment on our bulging membrane microdevice likely resulted from the magnitude difference of applied strains in the radial and circumferential directions.

At 15% strain magnitude, our microdevice platform improved iPSC-CMs contractility by 87% relative to the control group at day 10, and the achieved contractile stress of iPSC-CMs is higher than the highest value previously reported via mechanical stimulation (1.71 kPa vs. 1.05 kPa (Ruan et al., 2015). To further enhance cardiomyocyte maturation and contractility, combinatorial stimulants will likely need to be tested, including electrical stimulation (Nunes et al., 2013), substrate topography (Carson et al., 2016), delivery of biochemical factors (including those from other cell types like fibroblasts) (Laflamme et al., 2007), and regulation of gene expression (Takahashi et al., 2007). Our next steps are to incorporate these types of stimuli into our microdevice arrays to investigate their effects on iPSC-CMs and further improve cell maturation in vitro.

In addition to cell maturation, our device provides an intriguing way to model the mechanical stress (and cellular response) to a dilating, failing ventricle. In many forms of heart failure, the cardiac ventricles undergo a progressive dilation as a result of pressure overload either pressure from flow limitation (stenosis) or increased pumping volume (valve insufficiency causing a back-flow of blood (Goh et al., 2017; Vonk Noordegraaf et al., 2017)). It is recognized that the failing ventricle responds differently to corrective pharmacology (e.g., isotropes), compared to a healthy heart (Ahmad et al., 2019; Farmakis et al., 2019). The ability to provide a tunable, repetitive stress on the functional cardiomyocyte monolayer offers the possibility of emulating ventricular wall stress, with the subsequent quantification of contractility after the administration of a potential therapeutic. This capacity would be specifically useful in modeling cardiac diseases with a maladaptive response to mechanical stress (Brayson and Shanahan, 2017).

5. Conclusion

Mechanical cues play a key role in regulating cellular functions and maintaining homeostasis. The work presented here focused on quantifying the effect of different mechanical strain magnitudes on the contractility and maturation of iPSC-CMs. We developed a microdevice platform to mechanically stimulate monolayers of iPSC-CMs with strain magnitudes ranging from 5% to 20%. In situ measurement of contractility iPSC-CMs was realized by embedding fluorescent nanobeads in the device membrane and performing traction force microscopy. Our experimental results show that cell contractility was enhanced in a strain magnitude-dependent manner and plateaued at 15% strain. Improvement in overall cell alignment, sarcomeric structure, and MYH7 expression were concurrent with the increase in iPSC-CM contractility. Our results highlight the importance of accounting for mechanical strain magnitude when creating in vitro cardiac models to ensure that the cellular phenotype represents an adult cardiomyocyte, improving the applicability and potential clinical translation of findings.

CRediT authorship contribution statement

Wenkun Dou: Conceptualization, Investigation, Methodology, Data curation, Writing - original draft. Li Wang: Conceptualization, Methodology, Data curation. Manpreet Malhi: Methodology, Investigation, Data curation, Writing - original draft. Haijiao Liu: Investigation, Data curation. Qili Zhao: Methodology, Validation. Julia Plakhnotkin: Investigation, Visualization. Zhengsong Xu: Methodology, Visualization. Zongjie Huang: Methodology, Visualization. Craig A. Simmons: Resources, Validation, Supervision, Writing - review & editing. Jason T. Maynes: Conceptualization, Resources, Validation, Supervision, Writing - review & editing. Yu Sun: Conceptualization, Resources, Validation, Supervision, Writing - review & editing, Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors acknowledge the financial support from the Canadian Institutes of Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Collaborative Health Research Projects (CHRP) grant. Y.S. also acknowledges the financial support from the Canada Research Chairs Program and the Ontario Research Fund – Research Excellence Program. W.K.D. acknowledges a fellowship from the Ted Rogers Centre for Heart Research Education Fund. J.T.M. would like to thank his clinical colleagues for protected time, and the Wasser Family and the SickKids Foundation for Chair funds.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bios.2020.112875.

References
