
Embryology

An interpretable artificial intelligence approach to 
differentiate between blastocysts with similar or same 
morphological grades
Hang Liu 1,†, Longbin Chen 2,†, Guanqiao Shan 1, Chen Sun1, Changfu Lu2,3,4,5, Hongqing Liao6,7, Shuoping Zhang 3,  
Shaonan Dong3, Xinxin Xu3, Qiuyun Yan3, Fei Gong2,3,4,5, Zhuoran Zhang8, Changsheng Dai9, Wenyuan Chen10, Haocong Song1,  
Lei Chen11, Shanshan Wang 11,�, Haixiang Sun 11,�, Ge Lin 2,3,4,5,12,�, Yu Sun 1,10,13,14,�, and Yifan Gu 2,3,4,5,�

1Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada 
2Institute of Reproductive and Stem Cell Engineering, Xiangya School of Basic Medical Science, Central South University, Changsha, Hunan Province, China 
3Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, Hunan Province, China 
4NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Xiangya School of Basic Medical Science, Central South University, Changsha, Hunan 
Province, China 
5Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, Hunan Province, China 
6Hengyang Nanhua-Xinghui Reproductive Health Hospital, Hengyang, Hunan Province, China 
7The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China 
8School of Science and Engineering, The Chinese University of Hong Kong-Shenzhen, Longgang District, Shenzhen, China 
9Institute of Robotics and Intelligent Systems, Dalian University of Technology, Dalian, Liaoning Province, China 
10Department of Computer Science, University of Toronto, Toronto, ON, Canada 
11Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 
Province, China 
12National Engineering and Research Center of Human Stem Cell, Changsha, Hunan Province, China 
13Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada 
14Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada

�Correspondence address. Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 
321, Zhongshan Road, Nanjing, Jiangsu Province 210008, China. E-mail: wss_19860820@sina.com https://orcid.org/0000-0002-1281-2343 (S.W.); Center for 
Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 321, Zhongshan Road, Nanjing, Jiangsu 
Province 210008, China. E-mail: stevensunz@163.com https://orcid.org/0000-0002-1215-1792 (H.S.); Institute of Reproductive and Stem Cell Engineering, Xiangya 
School of Basic Medical Science, Central South University, 172, Tongzipo Road, Changsha, Hunan Province 410013, China. E-mail: linggf@hotmail.com https:// 
orcid.org/0000-0002-3877-2546 (G.L.); Department of Mechanical and Industrial Engineering, University of Toronto, 5, King’s College Road, Toronto, ON M5S 3G8, 
Canada. E-mail: sun@mie.utoronto.ca https://orcid.org/0000-0001-7895-0741 (Y.S.); Institute of Reproductive and Stem Cell Engineering, Xiangya School of Basic 
Medical Science, Central South University, 172, Tongzipo Road, Changsha, Hunan Province 410013, China. E-mail: evangoo@163.com https://orcid.org/0000- 
0001-7669-5046 (Y.G.)

†These authors share joint first authorship.

ABSTRACT 

STUDY QUESTION: Can a quantitative method be developed to differentiate between blastocysts with similar or same inner cell 
mass (ICM) and trophectoderm (TE) grades, while also reflecting their potential for live birth?

SUMMARY ANSWER: We developed BlastScoringNet, an interpretable deep-learning model that quantifies blastocyst ICM and TE 
morphology with continuous scores, enabling finer differentiation between blastocysts with similar or same grades, with higher 
scores significantly correlating with higher live birth rates.

WHAT IS KNOWN ALREADY: While the Gardner grading system is widely used by embryologists worldwide, blastocysts having 
similar or same ICM and TE grades cause challenges for embryologists in decision-making. Furthermore, human assessment is 
subjective and inconsistent in predicting which blastocysts have higher potential to result in live birth.

STUDY DESIGN, SIZE, DURATION: The study design consists of three main steps. First, BlastScoringNet was developed using a 
grading dataset of 2760 blastocysts with majority-voted Gardner grades. Second, the model was applied to a live birth dataset of 
15 228 blastocysts with known live birth outcomes to generate blastocyst scores. Finally, the correlation between these scores and 
live birth outcomes was assessed. The blastocysts were collected from patients who underwent IVF treatments between 2016 and 
2018. For external application study, an additional grading dataset of 1455 blastocysts and a live birth dataset of 476 blastocysts were 
collected from patients who underwent IVF treatments between 2021 and 2023 at an external IVF institution.

PARTICIPANTS/MATERIALS, SETTING, METHODS: In this retrospective study, we developed BlastScoringNet, an interpretable 
deep-learning model which outputs expansion degree grade and continuous scores quantifying a blastocyst’s ICM morphology and 
TE morphology, based on the Gardner grading system. The continuous ICM and TE scores were calculated by weighting each base 
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grade’s predicted probability and summing the predicted probabilities. To represent each blastocyst’s overall potential for live birth, 
we combined the ICM and TE scores using their odds ratios (ORs) for live birth. We further assessed the correlation between live birth 
rates and the ICM score, TE score, and the OR-combined score (adjusted for expansion degree) by applying BlastScoringNet to blasto
cysts with known live birth outcomes. To test its generalizability, we also applied BlastScoringNet to an external IVF institution, ac
counting for variations in imaging conditions, live birth rates, and embryologists’ experience levels.

MAIN RESULTS AND THE ROLE OF CHANCE: BlastScoringNet was developed using data from 2760 blastocysts with majority-voted 
grades for expansion degree, ICM, and TE. The model achieved mean area under the receiver operating characteristic curve values of 
0.997 (SD 0.004) for expansion degree, 0.903 (SD 0.031) for ICM, and 0.943 (SD 0.040) for TE, based on predicted probabilities for each 
base grade. From these predicted probabilities, BlastScoringNet generated continuous ICM and TE scores, as well as expansion degree 
grades, for an additional 15 228 blastocysts with known live birth outcomes. Higher ICM and TE scores, along with their 
OR-combined scores, were significantly correlated with increased live birth rates (P < 0.0001). By fine-tuning, BlastScoringNet was ap
plied to an external IVF institution, where higher OR-combined ICM and TE scores also significantly correlated with increased live 
birth rates (P ¼ 0.00078), demonstrating consistent results across both institutions.

LIMITATIONS, REASONS FOR CAUTION: This study is limited by its retrospective nature. Further prospective randomized trials are 
required to confirm the clinical impact of BlastScoringNet in assisting embryologists in blastocyst selection.

WIDER IMPLICATIONS OF THE FINDINGS: BlastScoringNet provides an interpretable and quantitative method for evaluating blasto
cysts, aligned with the widely used Gardner grading system. Higher OR-combined ICM and TE scores, representing each blastocyst’s 
overall potential for live birth, were significantly correlated with increased live birth rates. The model’s demonstrated generalizabil
ity across two institutions further supports its clinical utility. These findings suggest that BlastScoringNet is a valuable tool for assist
ing embryologists in selecting blastocysts with the highest potential for live birth. The code and pre-trained models are publicly 
available to facilitate further research and widespread implementation.

STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Vector Institute and the Temerty Faculty of Medicine 
at the University of Toronto, Toronto, Ontario, Canada, via a Clinical AI Integration Grant, and the Natural Science Foundation of 
Hunan Province of China (2023JJ30714). The authors declare no competing interests.

TRIAL REGISTRATION NUMBER: N/A.

Keywords: blastocyst evaluation / blastocyst selection / embryo evaluation / live birth / interpretable / deep learning / artificial intelli
gence / in vitro fertilization / IVF 

Introduction
Infertility affects one in six people globally, with IVF being the 
most used treatment (Adamson et al., 2023; World Health 
Organization, 2023). In IVF, oocytes are fertilized and cultured 
into multicellular blastocysts. Embryologists then evaluate and 
select the ‘highest quality’ blastocyst for transfer to the patient’s 
uterus. For evaluating and selecting blastocysts, the Gardner and 
Schoolcraft morphological grading system, commonly known as 
the Gardner grading system, is the most used method in IVF labo
ratories worldwide (Gardner, 1999; Gardner and Schoolcraft, 
1999; Alpha Scientists in Reproductive Medicine and ESHRE 
Special Interest Group of Embryology, 2011). This system 
assesses three aspects of a blastocyst: expansion degree, inner 
cell mass (ICM) morphology, and trophectoderm (TE) morphol
ogy. The expansion degree has six grades (1–6) based on the vol
ume of the blastocoel cavity and hatching status. For blastocysts 
with an expansion degree graded as 3–6, the ICM and TE are 
distinguishable. The ICM is graded as good, fair, or poor based 
on the number and compactness of cells, and the TE is graded 
as good, fair, or poor based on the number and cohesiveness 
of cells.

The Gardner grading system, despite its widespread use, has 
limited grading scale, i.e. only three grades (good, fair, and poor) 
for both ICM and TE. Consequently, when patients have multiple 
blastocysts at expansion degrees of 3 or higher, some of these 
blastocysts often receive similar or same ICM and TE grades. This 
similarity poses challenges for embryologists in determining 
which blastocyst to transfer. Additionally, manual grading of 
ICM and TE is subjective with intra- and inter-evaluator variabil
ity (Storr et al., 2017).

Deep-learning approaches have been developed for blastocyst 
evaluation. One approach involves using deep-learning models 
to directly predict IVF outcomes from blastocyst images. These 
IVF outcomes include blastocyst ploidy (Barnes et al., 2023), preg
nancy (VerMilyea et al., 2020; Berntsen et al., 2022), and live birth 

(Miyagi et al., 2019; Nagaya and Ukita, 2022; Liu et al., 2023b). 
Blastocysts can be ranked by the predicted probability of an out
come. Although these models achieved higher prediction accura
cies than manual evaluation, their lack of interpretability raises 
growing concerns (Afnan et al., 2021; Lee et al., 2024). Specifically, 
these models output a numerical probability for an outcome but 
cannot provide explanations that embryologists can relate to 
their knowledge or practice, making it difficult for embryologists 
to trust or act on the predictions. This lack of interpretability also 
makes troubleshooting challenging. For instance, a recent clini
cal trial compared the clinical pregnancy rates of blastocysts se
lected by such a deep-learning model to those selected by 
manual evaluation (Illingworth et al., 2024). The model achieved 
a higher clinical pregnancy rate in fresh embryo transfer cycles 
(48.1% vs 44.5%, P¼ 0.35) but a significantly lower clinical preg
nancy rate in frozen embryo transfer cycles (49.5% vs 61.3%, 
P¼ 0.032). Due to the model’s lack of interpretability, the reason 
for this disparity remains unclear, making it difficult to trouble
shoot and improve the model.

An alternative approach is to use deep-learning models to pre
dict Gardner grades from blastocyst images (Kragh et al., 2019; 
Liu et al., 2023a), which is inherently interpretable to embryolo
gists. By training on blastocyst images with majority-voted 
grades from multiple embryologists, these models have achieved 
comparable or higher grading accuracies than individual embry
ologists and do not suffer from intra- and inter-evaluator vari
ability. However, these models cannot distinguish between 
blastocysts with similar or same ICM and TE grades.

This study introduces BlastScoringNet, an interpretable deep- 
learning-based model that processes blastocyst images to pro
vide expansion degree grade and continuous scores that quantify 
a blastocyst’s ICM morphology and TE morphology, based on the 
Gardner grading system. The continuous scores for ICM and TE 
effectively differentiate between blastocysts with similar or same 
ICM and TE grades. They also demonstrate a strong correlation 
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with live birth outcomes and enable more accurate live birth pre
dictions than manual grading.

Materials and methods
Study design and datasets
The study design involves three steps: first, developing the pro
posed blastocyst scoring model, BlastScoringNet, using the grad
ing dataset, which includes blastocysts with majority-voted 
Gardner grades; second, applying the model to the live birth 
dataset, which includes blastocysts with known live birth out
comes, to generate blastocyst scores; and finally, correlating 
these blastocyst scores with live birth outcomes and comparing 
this correlation to that between manual grading and live birth. 
Both the grading and live birth datasets were collected from two 
IVF institutions: the Reproductive and Genetic Hospital of CITIC- 
Xiangya (Institution A) for model development and validation, 
and the Nanjing Drum Tower Hospital (Institution B) to test the 
model’s generalizability.

From Institution A, the grading dataset included 2760 blasto
cysts, each annotated by seven embryologists using the Gardner 
grading system, with majority-voted grades serving as labels to 
mitigate inter-observer variance. Additionally, a live birth dataset 
was collected from 15 228 blastocysts with live birth outcomes to 
assess the correlation between blastocyst scores and live birth. In 
both datasets, each blastocyst had two images captured under an 
inverted microscope (Axio Observer A1, Carl Zeiss, Germany; 20× 
objective lens, 200× image magnification), one focused on ICM 
and the other on TE. Information on live birth outcomes, Gardner 
grades, and IVF-related clinical features for these blastocysts was 
obtained from Institution A’s hospital information system (HIS).

From Institution B, the grading dataset included 1455 blasto
cysts with majority-voted Gardner grades from three embryolo
gists, and the live birth dataset included an additional 476 
blastocysts with live birth outcomes. The blastocysts in both 
datasets were cultured in a time-lapse incubator (CCM-iBIS, 
Astec, Japan; 10× objective lens, 320× image magnification), and 
for each blastocyst, five images were collected at different focal 
planes at 105 h (SD 3 h) post-fertilization (i.e. Day 5). Data on live 
birth outcomes, Gardner grades, and clinical features for these 
blastocysts were also obtained from Institution B’s HIS.

Blastocyst images from all the datasets were cropped to re

move the blank background and focus on the blastocysts. The 

cropped images were then padded to a dimension of 500 × 500 

pixels to facilitate model training, which requires images of 

uniform size. Since the time-lapse incubator at Institution B 

minimized light exposure during image capture, the blastocyst 

images were relatively dim. In addition to cropping and padding, 

a guided filter-based algorithm was used to enhance the bright

ness of the images (Shi et al., 2018).

Model design and training
BlastScoringNet is a classification model that analyzes blastocyst 

images to predict probabilities for each base grade in expansion 

degree, ICM, and TE (Fig. 1). During training, the model was 

optimized to maximize the probability of the target class while 

minimizing the probabilities of other classes.
Regarding the model architecture, we incorporated novel designs 

to fully utilize the 3D morphology captured by multi-focus images 

and adapt to varying numbers of these images. The model employs 

a convolutional neural network-based encoder to transform images 

into numerical vectors encoding high-level semantic information for 

classification. These vectors are concatenated and passed through 

fully connected layers and softmax layers to generate class probabil

ities. This design effectively integrates features from all multi-focus 

images, enhancing the model’s ability to capture comprehensive 3D 

morphological details. The shared encoder processes each image, 

and only the concatenation step adjusts to the number of inputs, 

enabling the model to seamlessly handle different numbers of 

multi-focus images.
Since training hyperparameters such as encoder architecture, 

batch size, and learning rate affect the performance of deep- 

learning models, to identify the optimal hyperparameters, we 

utilized Facebook Ax (version 0.2.2), an automatic hyperparameter- 

tuning tool. For training the model using the grading dataset, we se

lected a ResNet152 encoder (He et al., 2016), a batch size of 9, and 

an AdamW optimizer with a learning rate of 4.73e-5 and a weight 

decay of 0.51. The proposed model was implemented using 

PyTorch 2.1.0 and Python 3.8.10. Experiments were run on a work

station running CentOS 7.9 with an AMD Ryzen Threadripper 

3970X CPU and NVIDIA RTX 6000 Ada GPUs.

Figure 1. The architecture of BlastScoringNet and comparison with embryologist evaluations of a blastocyst. BlastScoringNet processes multi-focus 
images of a blastocyst to calculate expansion degree (ED) grade and continuous scores quantifying inner cell mass (ICM) morphology and trophectoderm (TE) 
morphology, based on the Gardner grading system (Gardner, 1999; Gardner and Schoolcraft, 1999). A convolutional neural network serves as the encoder, 
converting the multi-focus images into numerical vectors that encode high-level semantic information for classification. These vectors are concatenated and 
passed through fully connected layers, followed by softmax layers to predict the probability for each grade in ED, ICM, and TE. The ED grade is determined as 
i, where pi is the largest in the vector of probabilities for ED. BlastScoringNet classifies only blastocysts with ED grades of 3–6, as ICM and TE are 
distinguishable in these blastocysts. The Istanbul consensus workshop provides a numerical scale for the Gardner grading system, assigning a value of 1 for 
grade A (good), 2 for grade B (fair), and 3 for grade C (poor) for both ICM and TE (Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group 
of Embryology, 2011). We applied this grading scale when calculating the ICM and TE scores. The ICM score (SICM) and TE score (STE) are calculated by 
summing the predicted probabilities, each weighted by its corresponding grade (1–3 for ICM and TE). These scores enable finer differentiation between 
blastocysts with similar or same ICM and TE grades. Refer to the ‘Data availability’ section for the GitHub repository containing the source code.
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Calculation of ICM and TE scores from predicted 
probabilities
In a classification model, predicted probabilities quantify how 
closely an object’s characteristics align with those typical of each 
class (Nasrabadi, 2007). A key innovation in our approach lies in 
how these probabilities are processed for ICM and TE. Existing 
methods use the highest probability to assign a single grade 
(Kragh et al., 2019; Liu et al., 2023a). In contrast, our model calcu
lates continuous ICM and TE scores by summing the predicted 
probabilities, each weighted by its corresponding grade (1–3 for 
ICM and TE), allowing for finer differentiation between blasto
cysts with similar or same ICM and TE grades (Fig. 1).

For the ICM and TE scores, according to the Istanbul consen
sus on blastocyst grading, the three morphological grades—A 
(good), B (fair), and C (poor)—are assigned base grades of 1, 2, and 
3, respectively (Alpha Scientists in Reproductive Medicine and 
ESHRE Special Interest Group of Embryology, 2011). The final ICM 
or TE score is computed by summing these probability values, 
each weighted by their corresponding base grades. The calcu
lated score ranges from 1 to 3, with 1 indicating the best quality 
and 3 indicating the poorest quality. To ensure that a higher 
score represents better morphological quality, the calculated 
score is subtracted from four for inverting the scale (Fig. 1).

Note that we did not calculate such a continuous score for the 
expansion degree. This is because the features that determine 
the expansion degree are relatively straightforward, allowing the 
model to classify it with high accuracy (Fig. 2). Consequently, the 
highest probability is nearly 1 and other probabilities are nearly 
0, making the calculated continuous score nearly identical to the 
actual grade of the expansion degree.

Correlation with live birth
The BlastScoringNet model was subsequently applied to calcu
late continuous ICM and TE scores, as well as expansion degree 
grades, for additional blastocysts with known live birth out
comes. We assessed the correlation between ICM and TE scores 
and live birth outcomes. To represent each blastocyst’s overall 
potential for live birth, we combined the ICM and TE scores using 
their odds ratios (ORs) for live birth. Since the ORs represent how 
much the odds of live birth increase with each unit increase in 
the ICM and TE scores, we calculated their combined effect by 
multiplying these ORs raised to the power of their respective 
scores. Specifically, the OR-combined score was calculated 
according to ðORICMÞ

SICM × ðORTEÞ
STE , where SICM and STE represent 

the ICM and TE scores, respectively, and ORICM and ORTE are the 

ORs for the live birth associated with each score. Live birth rates 
were analyzed across quintiles of these scores, and statistical sig
nificance was assessed using the Cochran–Armitage trend test. 
We also compared the predictive accuracy for live birth out
comes between BlastScoringNet and manual grading by develop
ing logistic regression models based on each method separately. 
For these analyses, blastocysts with known live birth outcomes 
were stratified by transfer cycle type (frozen embryo transfer cy
cle or fresh cycle), maternal age (<35years or ≥35years), and 
blastocyst development day (Day 5 or Day 6).

External application
Due to differences in blastocyst imaging conditions (e.g. appear
ance, magnification, and number of focal planes) and live birth 
rates across IVF institutions, a blastocyst evaluation model de
veloped at one institution requires fine-tuning for optimal perfor
mance when applied externally (Afnan et al., 2021). Thus, this 
external application study involved fine-tuning BlastScoringNet 
for application at an external IVF site, Institution B, and validat
ing its correlation with live birth outcomes. We collected two 
datasets from Institution B: a grading dataset comprising blasto
cysts with majority-voted Gardner grades and a live birth dataset 
comprising blastocysts with known live birth outcomes. At 
Institution B, blastocyst images were captured using a time-lapse 
incubator (CCM-iBIS, Astec, Japan), which differed in appearance, 
magnification and were captured at five focal planes per blasto
cyst instead of two, as in Institution A (Supplementary Figs S1 
and S2). This setup was for testing BlastScoringNet’s generaliz
ability to these variations.

The fine-tuning process involved adapting BlastScoringNet to 
handle five multi-focus images of blastocysts, initializing the en
coder with pre-trained weights from Institution A, and training 
the model on Institution B’s dataset. To reduce the fine-tuning 
burden, we evaluated whether the predefined hyperparameters 
(e.g. learning rate, batch size) from Institution A could be directly 
applied to train the model at Institution B, and assessed the im
pact of using pre-trained weights on the model’s classification 
accuracy. Additionally, we assessed the correlations between 
BlastScoringNet-calculated blastocyst scores and live birth 
outcomes.

Statistical analysis
The predictive accuracy of BlastScoringNet was assessed using 
receiver operating characteristic (ROC) curve analysis, with the 
AUC as a quantitative measure of performance. ROC analysis 

Figure 2. ROC curves for classifying ED (A), ICM (B), and TE (C) using the test dataset, which consists of 300 blastocysts. ROC, receiver operating 
characteristic; ED, expansion degree; ICM, inner cell mass; TE, trophectoderm.
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was conducted to evaluate BlastScoringNet’s ability to distin
guish between blastocysts of different grades across expansion 
degree, ICM, and TE. Logistic regression models were used to pre
dict live birth outcomes. In this study, all AUC values refer 

specifically to the area under the ROC curve. The Cochran– 
Armitage trend test was performed to assess the monotonic in
crease in live birth rates across quintiles of ICM scores, TE scores, 
and their OR-combined scores. A P-value of less than 0.05 was 
considered statistically significant for all analyses.

Ethical approval
This study was conducted in accordance with applicable guide
lines and regulations, with ethical approval granted by the Ethics 
Committee at the Reproductive and Genetic Hospital of CITIC- 
Xiangya (approval number: LL-SC-2021-008) and the Ethics 
Committee at the Nanjing Drum Tower Hospital (approval num
ber: 2023-171-01).

Results
AUCs of BlastScoringNet in classifying expansion 
degree, ICM, and TE
BlastScoringNet was developed using 2760 blastocysts, each 
assigned a majority-voted Gardner grade for expansion degree, 
ICM, and TE (Table 1). The blastocysts were randomly divided 

Table 1. Distribution of blastocysts by expansion degree grade, 
ICM grade, and TE grade in the grading dataset from 
Institution A.

Blastocyst grading parameters Grades
Grading dataset 

(n52760 blastocysts)

Expansion degree 3 85 (3.08%)
4 2125 (76.99%)
5 350 (12.68%)
6 200 (7.25%)

ICM grade A (good) 862 (31.23%)
B (fair) 1779 (64.46%)

C (poor) 119 (4.31%)
TE grade A (good) 907 (32.86%)

B (fair) 1372 (49.71%)
C (poor) 481 (17.43%)

Data are n (%). ICM, inner cell mass; TE, trophectoderm.

Figure 3. Example images of blastocysts with varying ICM morphological quality. Each image is accompanied by its BlastScoringNet-calculated ICM 
score, a vector showing the predicted probabilities for Gardner grades A, B, and C, and qualitative descriptions of the ICM morphology, based on the 
Gardner criteria. The region where the ICM is located is outlined in red. Refer to the ‘Data availability’ section for the GitHub repository containing the 
source code. ICM, inner cell mass. Scale bars show 50 µm.
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into 2160 for training, 300 for validation, and 300 for testing. In 
classifying expansion degree, the model achieved a mean AUC of 
0.997 (SD 0.004). Specifically, the AUCs were 0.992 for grade 3, 
0.998 for grade 4, 0.999 for grade 5, and 1.000 for grade 6. These 
near-perfect AUC values are attributable to the distinct morpho
logical features characterizing each expansion degree; for exam
ple, a thinned zona pellucida characterizes grade 4, and 
herniating cells characterize grade 5. In classifying ICM, the model 
achieved a mean AUC of 0.903 (SD 0.031), with individual AUCs of 
0.935 for grade A (good), 0.873 for grade B (fair), and 0.902 for 
grade C (poor). For TE classification, the model achieved a mean 
AUC of 0.943 (SD 0.040), with individual AUCs of 0.967 for grade A 
(good), 0.896 for grade B (fair), and 0.965 for grade C (poor) (Fig. 2).

ICM/TE scores and grades
Unlike existing works that only predict ICM and TE grades (Chen 
et al., 2019; Kragh et al., 2019; Liu et al., 2023b), continuous ICM 

and TE scores were generated by summing the products of the 
predicted probabilities and their corresponding grade values 
(Fig. 1). These continuous scores enable finer differentiation be
tween blastocysts with similar or same ICM and TE grades fol
lowing the Gardner criteria (Figs 3 and 4). A higher ICM score 
indicates better morphological quality of the ICM, such as in
creased compactness (Fig. 3). Similarly, a higher TE score indi
cates better morphological quality of the TE, such as greater cell 
number and cohesiveness of the epithelium (Fig. 4).

Correlation between ICM and TE scores and 
live birth
To assess the correlation between ICM and TE scores and live 
birth, BlastScoringNet was then used to calculate ICM and TE 
scores, as well as the expansion degree grades, for blastocysts 
with known live birth outcomes. Expansion degree grades were 
included as a confounding factor in the analysis. A total of 15 228 

Figure 4. Example images of blastocysts with varying TE morphological quality. Each image is accompanied by its BlastScoringNet-calculated TE 
score, a vector showing the predicted probabilities for grades A, B, and C, and qualitative descriptions of the TE morphology, based on the Gardner 
criteria. The regions of individual TE cells that are visible in the outer layer surrounding the blastocoel cavity are highlighted in random colors. Refer to 
the ‘Data availability’ section for the GitHub repository containing the source code. TE, trophectoderm. Scale bars show 50 µm.
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blastocysts with known live birth outcomes were included in the 
analysis (Table 2). Of these, 12 184 blastocysts originated from 
9734 frozen embryo transfer (FET) cycles (mean maternal age: 
32.20 years [SD 4.62]), while 3044 blastocysts came from 2848 
fresh embryo transfer cycles (mean maternal age: 30.86 years [SD 
4.46]). Among the blastocysts from FET cycles, 9456 (77.61%) were 
day-5 blastocysts, and 2728 (22.39%) were day-6 blastocysts. Note 
that all blastocysts from fresh cycles were day-5 blastocysts.

Higher ICM scores, TE scores, and their OR-combined scores 
were significantly correlated with increased live birth rates across 
all stratification groups (P < 0.05), including the type of transfer 
cycle (FET cycle or fresh cycle), maternal age (<35 years or 
≥35 years), and the day of blastocyst development (Day 5 or Day 
6) (Table 3). Note that when considering only the ICM score or the 
TE score alone, there were instances where lower-ranked quin
tiles exhibited higher live birth rates. Specifically, in the stratifica
tion of fresh cycles with maternal age ≥35 years, the first quintile 
(Q1) for the ICM score had a live birth rate of 33.06%, which was 
higher than that of the second quintile (Q2) at 28.10% and the 
third quintile (Q3) at 32.23%. For the TE score in the stratification 
of FET cycles with maternal age ≥35 years and Day 6 blastocysts, 
the second quintile (Q2) had a live birth rate of 10.63%, slightly 
higher than the third quintile (Q3) at 10.19%. However, the OR- 
combined ICM and TE scores did not exhibit these inconsistencies, 
indicating that combining both scores provides a more compre
hensive assessment of blastocyst quality and more accurately 
reflects their live birth potential. This finding aligns with clinical 
practice, where both ICM and TE are considered in the evaluation 
of a blastocyst. Additionally, these blastocyst scores demon
strated higher AUC values in predicting live birth outcomes com
pared to manual grades across all stratifications (Table 3).

External application study results
By fine-tuning the BlastScoringNet model using hyperparameters 
and pre-trained encoder weights from Institution A, we successfully 

applied it to an external IVF institution. From Institution B, we 
collected 1455 blastocysts, each assigned a majority-voted 
Gardner grade for expansion degree, ICM, and TE (Supplementary 
Table S1). These blastocysts were randomly divided into 1309 for 
training and validation, and 146 for testing. Fine-tuning enabled 
BlastScoringNet to achieve similar classification accuracy using 
only 40% of the training and validation data (AUC 0.876) com
pared to a baseline model trained from scratch—without prede
fined hyperparameters or pre-trained weights—using 100% of 
the data (AUC 0.872). Moreover, when 100% of the training and 
validation data were used, the fine-tuned model achieved a 
higher AUC (0.915 vs 0.872) (Supplementary Fig. S3). Additionally, 
higher OR-combined ICM and TE scores consistently correlated 
with increased live birth rates (P ¼ 0.00078), as assessed using 
476 fresh day-5 blastocysts from Institution B (Supplementary 
Tables S2 and S3). The model’s ability to generalize to 
multiple multi-focus images, rather than only two, streamlines 
the analysis of time-lapse incubator images by eliminating the 
need to manually select separate images focusing on the ICM 
and TE. Furthermore, multi-focus images provide a more com
prehensive view of blastocyst morphology for improved scoring 
accuracy and enhanced live birth prediction (Supplementary 
Table S4).

Discussion
Previous studies reported quantitative approaches for evaluating 
blastocyst morphology. Filho et al. (2012) investigated 
automated grading of ICM and TE using traditional image- 
processing methods; however, the approach achieved limited ac
curacy on a small dataset. Ahlstr€om et al. (2011, 2013) examined 
correlations between Gardner grades and live birth rates, but the 
method was not able to differentiate between blastocysts with 
the same grades. Ebner et al. (2016) investigated the correlation 
between live birth rates and ICM area and TE cell number, yet 

Table 2. Patient demographic and treatment characteristics by blastocyst transfer cycles in the live birth dataset from Institution A.

FET cycle Fresh cycle

Number of blastocyst transfer cycles 9734 2848
Maternal age (years) 32.20 (4.62) 30.86 (4.46)
BMI (kg/m2) 21.88 (2.50) 21.53 (2.51)
Infertility duration (years) 3.76 (2.88) 3.97 (2.89)
Infertility diagnosis

Tubal factor 3621 (37.20%) 1592 (55.90%)
Endometrial factor 118 (1.21%) 16 (0.56%)
Male factor 475 (4.88%) 184 (6.46%)
Combined factors 5259 (54.03%) 982 (34.48%)
Unexplained infertility 261 (2.68%) 74 (2.60%)

Antral follicle count in both ovaries 22.46 (13.30) 22.09 (12.77)
Retrieved oocyte number 14.21 (6.22) 12.80 (5.39)
Endometrium thickness (mm) 11.87 (1.77) 12.37 (2.19)
Number of transferred blastocysts� 12 184 3044

Maternal age <35 years 8622 (70.76%) 2439 (80.12%)
Maternal age ≥35 years 3562 (29.24%) 605 (19.88%)
Day 5 9456 (77.61%) 3044 (100.00%)†

Day 6 2728 (22.39%) 0
Live birth 3888 (39.94%) 1388 (48.74%)

Maternal age <35 years 3117 (45.62%) 1185 (52.71%)
Maternal age ≥35 years 771 (26.57%) 203 (33.83%)
Day 5 3431 (44.56%) 1388 (48.74%)†

Day 6 457 (22.47%) 0

Data are n, n (%), or mean (SD).
� A maximum of two blastocysts were transferred per cycle. For cycles involving the transfer of two blastocysts, only outcomes of either two live births or non- 

live births were included. A minor confounder arises if two live births are monozygotic twins derived from a single blastocyst, in which case the second blastocyst 
would be misclassified as resulting in a live birth. However, the effect is minimal due to the low incidence of such cases (�0.1%).

† Only day-5 blastocysts were transferred in fresh cycles to align the embryo’s developmental stage with the optimal implantation window. FET, frozen 
embryo transfer.
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the metrics did not fully capture the complexity of ICM and TE 
morphology. In contrast, the continuous ICM and TE scores cal
culated by BlastScoringNet overcome the limited grading scale in 
the Gardner grading system and enable finer differentiation be
tween blastocysts with similar or same grades. Higher ICM and 
TE scores, as well as their OR-combined scores, were significantly 
correlated with increased live birth rates, demonstrating the 
model’s ability to rank blastocysts based on their live birth poten
tial. Furthermore, the generalizability of the proposed model was 
confirmed through application in an external IVF institution. 
These results suggest that BlastScoringNet is a valuable and gen
eralizable tool for assisting embryologists in selecting blastocysts 
with the highest likelihood of resulting in a successful birth.

One of BlastScoringNet’s strengths in blastocyst selection is 
its interpretability. This arises from its ICM and TE scores, which 
quantify the morphological quality of the ICM and TE consistent 
with the Gardner criteria. These scores are combined using their 
ORs for the live birth to evaluate and rank blastocysts. In clinical 
applications, BlastScoringNet’s evaluation and ranking process is 
understandable to embryologists, thereby avoiding well-recognized 
concerns associated with black-box models, such as reduced trust, 
challenges in real-time error-checking and troubleshooting, safety 
issues, and ambiguity regarding responsibility for blastocyst selec
tion decisions (Afnan et al., 2021).

Another strength of BlastScoringNet is its ability to consis
tently rank blastocysts based on their live birth potential. To se
lect the blastocyst with the highest live birth potential from a 
cohort, machine-learning models must evaluate and rank each 
blastocyst to identify the best one. This requires a model to pro
vide consistent evaluations that differentiate the relative live 
birth potential of each blastocyst. However, previous live birth 
prediction models lacked the ability to perform this critical rank
ing function (Miyagi et al., 2019; Nagaya and Ukita, 2022; Liu et al., 
2023b). In our work, we observed a statistically significant and 
consistent relationship between higher OR-combined ICM and TE 
scores and increased live birth rates, as confirmed by the 
Cochran–Armitage trend test (P< 0.0001, Table 3). This finding 
was further validated in different subgroups of blastocysts strati
fied by transfer cycle type (FET cycle or fresh cycle), maternal age 
(<35 years or ≥35 years), and blastocyst development day (Day 5 
or Day 6) (P<0.0001, Table 3).

Finally, we validated the generalizability of BlastScoringNet by 
fine-tuning it for use in an external IVF institution, accounting 
for common variations that exist across IVF institutions world
wide, such as differences in blastocyst image conditions (e.g. ap
pearance, magnification, and number of focal planes), IVF 
success rates, and embryologists’ experience levels. Given these 
variations, blastocyst evaluation tools developed using one data
set should be fine-tuned to ensure optimal performance when 
applied to external institutions. For example, iDAScore, a deep- 
learning model developed by Vitrolife to predict pregnancy from 
blastocyst images using data from multiple clinics, exhibited 
large variations in accuracy when generalized to new clinics in 
their clinic hold-out test (e.g. AUC ranging from 0.60 to 0.75) 
(Berntsen et al., 2022). To facilitate the fine-tuning process, we 
have made our hyperparameters (e.g. encoder architecture, 
batch size, and learning rate) and the pre-trained model publicly 
accessible. Providing these hyperparameters reduces the time 
needed to search for optimal hyperparameters on a new dataset. 
Additionally, the pre-trained model helps improve model accu
racy compared to training from scratch, as confirmed in our ex
ternal application study (Supplementary Fig. S3).

A few limitations should be considered. First, to apply 
BlastScoringNet externally, �1000 blastocyst images with 
majority-voted grades are currently needed to achieve high 
classification accuracy (e.g. AUC> 0.90, Supplementary Fig. S3). 
Constructing a comprehensive dataset of blastocyst images cap
tured from a number of imaging tools that are commonly used in 
IVF centers (e.g. Carl Zeiss, Nikon, Olympus, EmbryoScope) could 
help mitigate the fine-tuning effort. Training BlastScoringNet on 
such a comprehensive dataset could improve its generalizability, 
ultimately reducing or eliminating the need for fine-tuning. 
Second, the live birth prediction accuracy of BlastScoringNet- 
calculated blastocyst scores has room for further improvement, 
with AUCs of 0.57–0.67 across different stratifications in the pre
sent study. These AUC values are similar to those by black-box 
models that directly predict live birth outcomes from blastocyst 
images (Miyagi et al., 2019; Nagaya and Ukita, 2022; Liu et al., 
2023b). Besides the morphological quality of blastocysts revealed 
in static images, incorporating other parameters such as sponta
neous blastocyst collapse (Bickendorf et al., 2023; Zhu et al., 2024) 
and timings to specific stages (e.g. reaching the 6-cell or 
morula stage) (Bamford et al., 2023; Ten et al., 2024) may further 
improve the prediction accuracy. Third, the correlation between 
BlastScoringNet-calculated blastocyst scores and live birth out
comes was validated in this study using datasets from two 
IVF institutions both in China. Further validation in more diverse 
ethnic and racial groups could be insightful. Finally, as this 
study was based on retrospective data, the effectiveness of 
BlastScoringNet in improving IVF outcomes requires confirma
tion through prospective randomized controlled trials, which is 
the next step in our work.

In conclusion, BlastScoringNet is an interpretable and gener
alizable tool that aligns with the established clinical standard. 
The strong correlation between BlastScoringNet-calculated blas
tocyst scores and live birth outcomes indicates its potential to as
sist embryologists in selecting blastocysts with higher live birth 
potential. Additionally, BlastScoringNet may serve as a valuable 
tool for assessing blastocyst morphology in relation to other IVF 
outcomes, such as blastocyst ploidy, gestational age, birth weight 
and sex, and perinatal outcomes.
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